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Abstract. This study aims at identifying the chord functions by statisti-
cal machine learning. Those functions found in the traditional harmony
theory are not versatile for the various music styles, and we envisage
that the statistical method would more faithfully reflect the music style
we have targeted. In machine learning, we adopt hidden Markov mod-
els (HMMs); we evaluate the performance by perplexity and optimize
the parameterization of HMM for each given number of hidden states.
Thereafter, we apply the acquired parameters to the detection of modu-
lation. We evaluate the plausibility of the partitioning by modulation by
the likelihood value and, as our innovative method, the result is reduced
back to the number of states conversely. As a result, we found that the
six-state model outperformed the other models both for the major keys
and for the minor keys although they assigned di↵erent functional roles
to the two tonalities.

Keywords: chord function; hidden Markov model; modulation detec-
tion.

1 Introduction

The chord functions are one of the most fundamental bases of tonal music to
identify the key. Although the traditional functional harmony theory well de-
scribes the general roles of chords, the functions should have been diversified in
accordance with the target music.

Previously chord function identification has been carried out mainly by sta-
tistical clustering algorithms [4, 8]. Since these statistical methods learn from
raw data instead of the textbook theory, they have the potential to reflect the
di↵erence of music styles. A recent study proposed a generative model [12],
which is advantageous in its predictive power and in its applicability to prac-
tical problems such as melody harmonization [11]. However, this study focused
on popular music and the key was assumed to be invariant within each piece.
In our research, we consult J. S. Bach’s music, thus the modulation detection
would be inevitable. Thus far, modulation detection has been carried out either
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by heuristics [8] or by a key-finding algorithm [4] though there have been still
several di�cult cases to determine the key [10].

We conceive that the local keys could be also determined by the functional
progression of chords. Therefore, we propose a new dynamic modulation detec-
tion method, applying the statistically found chord functions. Here, the optimal
number of functions would be also determined computationally so that it maxi-
mizes the likelihood of chord progressions in the entire corpus. In this research,
we achieve the detection of the data-oriented chord functions, together with the
detection of modulation. We envisage that we would obtain finer-grained chord
functions which faithfully reflect the targeted music style. Our method is new
in that we do not need to prefix the scope of modulation as opposed to the
algorithm using the histogram of pitch classes [5, 10, 3, 13].

We begin this paper by reviewing related works, especially the key detec-
tion algorithms and the statistical learning methods of the chord functions in
section 2. Then, we propose our method in section 3, and thereafter show the
experimental results in section 4. We conclude in section 5.

2 Related Work

2.1 Key detection algorithms

Among the key detection algorithms based on the histogram of the pitch classes
[10, 5, 3, 13], the most widely used one is the Krumhansl-Schmuckler algorithm
that adopts the key-profile obtained by a psychological experiment [5]. More
recently, the key-profile was obtained from music data by using a simple Bayesian
probabilistic method [10] and the Latent Dirichlet Allocation (LDA) [3].

Sakamoto et al. [9] employed the distance between chords by using Tonal
Pitch Space (TPS) [6] rather than the pitch classes. Given a sequence of Berklee
chord names, the key is detected by the Viterbi algorithm, not requiring a fixed
scope. A Berklee chord can be interpreted in multiple keys, for example, the
chord C is I of Cmajor key as well as IV of G major key. Therefore, the network
of candidate nodes consists of keys with degree names. Since TPS does not have
adjustable parameters, it cannot reflect the di↵erence in music styles.

2.2 Statistical learning of the chord functions

Statistical learning of the chord functions has been studied by classifying the
chords using clustering algorithms. Rohrmeier and Cross [8] used the hierarchical
cluster analysis to find the statistical properties of the chords, where the most
distinctive cluster of the pitch class sets reflected the dominant motion in both
major and minor keys. They also found that the result for the minor key was
significantly di↵erent from that for the major key. The clusters that represent
the Tonic and Dominant of the relative major key were obtained.

Jacoby et al. [4] also carried out the clustering of the chords in J. S. Bach’s
chorales and some other datasets. They proposed the evaluation method using
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two criteria, accuracy and complexity, inspired by the information theory. They
introduced the optimal complexity-accuracy curve, which is formed by the max-
imal accuracy for each complexity. When using diatonic scale degrees as the
surface tokens, the functional harmony theory that uses Tonic, Dominant, Sub-
dominant clustering was plotted on the optimal curve, while the Major, Minor,
Diminished clustering was far less accurate. This means that the functional har-
mony theory is more favorable than Major, Minor, Diminished clustering when
using the diatonic scale degrees as the surface tokens. In addition, they employed
the analysis with automatically labelled data. They adopted the key-detection al-
gorithm of White and Quinn [13] that used the Krumhansl-Shmuckler algorithm
[5] on windows of eight slices, and picked up the most common 22 pitch classes
(with the bass notes) as the surface tokens. They reported that the obtained
clusters were quite close to the Tonic, Dominant, Sub-dominant classification
when the number of the categories was 3.

On the other hand, Tsushima et al. [12] found the chord functions in datasets
of popular music pieces, using generative models rather than clustering: HMM
and Probabilistic Context Free Grammar (PCFG). They reported that when the
number of states was 4, the output probability of HMM trained with a popu-
lar music dataset could be interpreted as the chord functions: Tonic, Dominant,
Sub-dominant, and Others [12], though the model achieved less perplexity with
more states. Although PCFG is more advantageous since it can represent more
external structures such as long-range dependency of cadence, the reported per-
formance did not exceed that of the HMM. Using a trained HMM as the initial
value of PCFG was also found to be clearly e↵ective. However, for the melody
harmonization task, PCFG was reported more e↵ective than HMM [11]. For
training the HMM, they tested the expectation-maximization (EM) algorithm
and Gibbs Sampling (GS) since GS showed significantly higher accuracy than
the EM algorithm in the part-of-speech tagging task [2]. They reported that the
GS algorithm may perform better especially for a large number of hidden states
since it can avoid being trapped in bad local optima.

3 Chord function identification with HMM

Following the previous works, we used a statistical approach to identify chord
functions. We chose the HMM for our model because its structure agrees well
with that of the functional harmony theory. We expect that the states of the
HMM represent chord functions, instead of another possible approach that as-
sumes chord symbols as the hidden states and surface notes as the output tokens.

We obtained the chord functions with the plausible number of states that
was fed back by the modulation detection in the following steps.

1. Train the HMM in the range of 2–12 states and choose the best parameter-
ization for each number of states in terms of perplexity.

2. Calculate the likelihood of the chord progression of every candidate partition
of key blocks by using the obtained HMM, and determine the intervals of
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modulation that maximize the sum of the likelihoods of key blocks by using
the set partitioning model.3

3. Obtain the best number of states that scores the highest sum of likelihoods
on an entire corpus.

3.1 Dataset

We used J. S. Bach’s four-part choral pieces BWV253-438 from the Music21
Corpus [1] as our dataset. Several pieces in the chorales have complicated mod-
ulations which are not compatible with the modern tonalities. We should also
consider that the key signatures of several pieces are di↵erent from the modern
tonal system. We excluded 24 pieces which obviously di↵ered from the major
and the minor key: 22 dorian, 1 mixolydian, and 1 phrygian, and targeted the
remaining 94 major pieces and 68 minor pieces. However, there were still pieces
that retained the feature of the church modes, especially in minor mode pieces.

To learn the chord functions, we used only the first and the last phrases4 that
were identified by the fermata5 notation in each piece because we supposed to
be able to identify the key of these phrases from the key signature. Those pieces
whose first and last chords were di↵erent from the tonic of the key signature
were excluded.

3.2 Functional chord progression model based on HMM

Fig. 1. Graphical representation of the hidden Markov model (HMM).

Model We regarded chord degrees as output tokens for the HMM in Fig. 1,
and states as chord functions. Here, zt denotes the hidden state and xt the
output token at each time step. The state-transition probability is denoted by
aij and the output probability bjk. The number of distinct states is denoted
by Ns, and that of output tokens Nv. When we need to specify a state, we use
(zt =)si, i 2 {1, . . . , Ns}, and for output tokens we use (xt =)vk, k 2 {1, . . . , Nv}.

3 The set partitioning model is a sort of the linear programing.
4 In this paper, a phrase means a section divided by fermatas.
5 Fermata is a notation which usually represents a grand pause. However, in the chorale

pieces, it represents the end of a lyric paragraph.
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Surface tokens We modelled the chord functions of the major key and the
minor key by the HMM, and investigated the number of states in the range from
2 to 12. To train the models, we transposed all the major keys to C major and
all the minor keys to A minor.

Basically, we used chord degrees on the diatonic-scale as the surface tokens
because we trained the models only for C major and Aminor, and used them for
other keys by transposing the surface tokens. We needed to use more tokens for
the minor key considering the all possible chords that were created by introducing
the leading-tone in addition to the natural VII. The surface tokens of the major
and minor keys are listed in Table 1.

Major Minor
Chord name Proportion Chord name Proportion

C major(I) 30.50% A minor(i) 28.59%
G major(V) 19.56% E major(V) 14.94%
Dminor(ii) 12.35% C major(III) 7.91%
A minor(vi) 10.76% B diminished(ii�) 7.22%
F major(IV) 9.57% Dminor(IV) 6.23%
B diminished(vii�) 5.44% G major(VII) 6.13%
E minor(iii) 4.37% G] diminished(vii�) 5.24%
Others 7.45% F major(VI) 5.14%

E minor(v) 3.46%
C augmented(III+) 2.08%
Others 13.06%

Table 1. Surface tokens.

Here, we simply removed chords that were not classified to major, minor,
diminished, and augmented by using a function to classify the qualities of chords
in the Music21 library [1]. We treated the remaining chords that were not in the
diatonic scale as ‘Others’. In addition, we treated a succession of the same chord
as a single surface token.

Optimization method We used the simple EM-based approach known as the
Baum-Welch algorithm for learning the HMM parameters from data. While the
GS would be e↵ective to avoid bad local optima [12, 2], we rather employed
the optimization from a large number of initial values to study the variance
of locally optimal parameterizations. For each number of states, we used 1000
di↵erent initial values to learn the parameters. We randomly initialized the state-
transition probability matrix, while the output probability matrix was initialized
uniformly. For each initial value setup, the training data consisting of randomly
connected pieces, where we shu✏ed the opus numbers of the pieces and put them
into one sequence.
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Evaluation measures We evaluated the parameterizations of the HMM ob-
tained from 1000 di↵erent initial values on each number of states (among 2 –
12) to find the optimal one. For each number of states, we selected the opti-
mal parameterization which scored the lowest perplexity defined by following
equation:

P = exp

✓
�

1

|x|
ln P (x|✓)

◆
. (1)

We also calculated the variance of the 1000 optimal parameterizations for
each number of states by employing the K-means clustering around the best op-
timal parameterization. A large variance indicates larger di�culty to consistently
obtain the optimal parameterization.

3.3 Modulation detection as the set partitioning problem

The remaining problem is to select the best number of hidden states. We obtain
it by using the modulation detection described below. We select a key that
maximizes the likelihood, calculated by the obtained HMM. If we simply apply
the HMM, we can only obtain one optimal key for a target piece. By the set
partitioning algorithm to detect modulations, we can assign the optimal key
blocks to the target piece. The chord functions are expected to work well for
detecting a key, especially when there are modulations in the target pieces.

This idea can be formulated as a special case of the set partitioning model,
regarding that a music piece is composed of locally optimal key blocks. Here, we
use the following notation.

T = {1, · · · , Nt} Serial number of chords in a target sequence
C = {1, · · · , Nc} Set of indices of candidate blocks

j 2 C Index of blocks
Cj Set of chords in candidate block j
eij eij = 1 if chord i 2 Cj and otherwise eij = 0

dj (j 2 C) dj = 1 if Cj is chosen in the partition and otherwise dj = 0
rj Score (the likelihood and penalty) of candidate block Cj

Table 2. Notation in the set partitioning model.

The objective of this set partitioning model is to maximize
PNc

j=1 rjdj , which
means that we select the set of blocks that gives the highest score. The imposed
constraints are

PNc

j=1 eijxj = 1, i 2 T, dj 2 {0, 1}, j 2 C, which means that a
surface token must be included in one and only one block.

Since we used only the chords on the diatonic scales, there were many tokens
that were classified as ‘Others’ described in Table 1 when considering all the
candidate keys. We imposed penalty on ‘Others’ tokens. The penalty value was
empirically set to log(0.01).
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4 Experimental results

4.1 Evaluation for each number of hidden states

Perplexity For each number of states, we assumed that a parameterization
with a lower perplexity is better. With this criteria, we sorted the results by the
perplexity and selected the best one in all the results from 1000 initial values.
The best perplexity decreased as the number of states increased (Fig. 2). This
result is consistent with the previous work that used a popular music dataset
[12].

Fig. 2. Perplexities of 10-top parameterizations for each number of states.

Fig. 3. Average squared distances of 10-top parameters with K-means clustering.

Variance Next, we studied the variance of the optimal parameterizations. For
each number of states, we calculated the average squared distances of each of the
output and transition probabilities among the top 10 optimal parameterizations.
To eliminate the influence of the permutation ambiguity of the state labels, we
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adopted the K-means clustering method for calculating the squared distance
between two parameterizations of output/transition probabilities. More specifi-
cally, we used the Scikit-learn library [7] and fixed the centroids of the clusters
as the best optimal parameter values.

As shown in Fig. 3, the distances of the optimal parameterizations increase
along with the number of hidden states. This suggests that when the number
of hidden states is large there are many di↵erent optimal parameterizations and
it is di�cult to uniquely find the best parameterization solely based on the
perplexity.

4.2 Selecting the number of hidden states

Fig. 4. Sum of the log likelihood of all pieces.

As explained in section 3.3, we obtained the the appropriate number of states
by simultaneously employing the chord function identification and modulation
detection. To reduce the computation time, we separated a piece into phrases
by using the fermata notation, and calculated the likelihood on each phrase.

The 6-state model scored the highest sum of likelihoods both for the major
keys and for minor keys (Fig. 4).

4.3 Chord function identification

Major key For the major key, the chords were classified into fine-grained func-
tions, up to 6 states, as shown in Fig. 5. When the number of states is 3, in
addition to the clear functions of Tonic {I} and Dominant {V,vii�}, there is a
mixed function of Tonic and Sub-dominant to which {ii, iii, IV,vi} are assigned.
This mixed function is separated into Tonic {iii,vi} and Sub-dominant {ii, IV}

when the number of states is 4. And then, the state of Dominant is separated
into {V} and {vii�} with 5 states. Finally, when the number of states is 6, most
chords are assigned to an almost unique state, except that {iii,vi} form one
state. Here, we see that {iii} is mainly assigned to Tonic, which recovers the
result of Tsushima et al. for popular music datasets [12].
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Fig. 5. Output probabilities of the best HMMs for the major key.

The fine-grained state-transition probability is also meaningful. As shown in
Fig. 6, we can find detailed functions. For example,

1. The state s2 for V and state s6 for vii� both tend to proceed to state s4 for
I, while state s6 less often proceeds to s3 for {iii,vi}.

2. Although both states s1 and s5 have the function Sub-dominant, s1 for ii
more often proceeds to Dominant chords (state s2 and state s6) than state
s5 for IV.

Minor key The results for the minor key were significantly di↵erent from those
for the major key, where states corresponding to Tonic and Dominant of the
relative major key were obtained when the number of states was larger than
4. With 6 hidden states, in addition to Tonic, Dominant and Sub-dominant,
the Tonic of the relative major and that of the Dominant of the relative major
were obtained. This result reflects the feature of the choral, whose melodies were
composed in the medieval ages in the church modes instead of modern tonalities,
prior to the harmonization by J. S. Bach, because the relative keys share the
common pitch classes like the church modes.

Rohrmeier et al. also pointed out that the groups of chords corresponding
to the relative major key were existing in the minor key clusters [8]. In addition
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Fig. 6. Output and transition probabilities of 6 hidden states.

to this finding, we found how the same chord could have di↵erent functions
by observing the value of state-transition probability. As shown in Fig. 6, ii�

appears in both hidden states s3 and s5. Here, state s5 is Sub-dominant since it
tends to proceed to state s2 which is clearly Dominant. On the other hand, ii�

in state s3 can be interpreted as the Dominant of the relative major key since it
mainly proceeds to state s6, which represents III corresponding to I of relative
major key.

4.4 Example of the modulation detection

Although we calculated the sum of the likelihood on separated phrases to reduce
the computation time as mentioned in section 4.2, we can detect the modulation
on the entire piece. Since pieces of classical music often have a number of mod-
ulations and their phrase boundaries are usually not explicitly indicated, this
fully dynamic modulation detection is practically useful.

For example, Fig. 7 shows the modulation detection for the piece BWV271.
The initial key of this piece is D major, while the key at the end is Bminor with
a half cadence. This piece has key blocks in D major, B minor, E minor, and
A major. The proposed method captured the modulations for the most part.
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Fig. 7. Modulation detection for the piece BWV271. The ‘No.’ denotes serial numbers,
‘Chord’ denotes chord names, ‘Key’ denotes keys and block numbers obtained by the
proposed method, and ‘State’ denotes HMM state labels.

5 Conclusion

We have employed the Hidden Markov Model (HMM) to identify the chord func-
tions, regarding the surface chord degrees as observed outputs. First, we have
looked for the best parameterization for each number of hidden states by per-
plexity, and then, we evaluated the best likelihood of partitioning by modulation.
We found that the most adequate number of hidden states was six, which is not
large, and thus we could give the fine-grained interpretations for chord functions;
e.g., the Dominant V and vii� had di↵erent tendency towards {iii,vi}, or the
subdominant IV and ii behaved di↵erently toward the Dominant.

We have applied those chord functions to the partitioning by modulation.
The interval of modulation was determined dynamically without fixing the scope
beforehand, however, the resultant score of partitioning was also fed back to the
number of hidden states. Thus, this process is a tandem model, which is one of
the most important features of our work.

Another important feature is the characterization of music styles by parame-
ters. In our example, the set of parameters reflects the specific feature of Bach’s
chorales, where the basic melodies are of church modes while the harmonization
is in the Baroque style. In general, other sets of parameters may have a potential
to characterize di↵erent music styles such as post-romanticism.

Since our main objective was the key identification, we excluded those bor-
rowed chords and assigned an artificial penalty value to them. Thus, to investi-
gate the key recognition with extraneous chords is our immediate future work.
And also, the evaluation with human annotations is our another important future
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work, even though the human recognition of modulations could admit multiple
interpretations. In addition, although we have realized an e�cient modulation
detection, our method included such errors to regard groups of chords as mod-
ulation. To solve this issue, we plan to introduce the notion of dependency in
chords, that is to assess the prolongation of the influence of preceding chords.
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