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ABSTRACT
This paper presents an automatic harmonization method

that, for a given melody (sequence of musical notes), gen-
erates a sequence of chord symbols in the style of exist-
ing data. A typical way is to use hidden Markov models
(HMMs) that represent chord transitions on a regular grid
(e.g., bar or beat grid). This approach, however, cannot
explicitly describe the rhythms, harmonic functions (e.g.,
tonic, dominant, and subdominant), and the hierarchical
structure of chords, which are supposedly important in tra-
ditional harmony theories. To solve this, we formulate a hi-
erarchical generative model consisting of (1) a probabilis-
tic context-free grammar (PCFG) for chords incorporating
their syntactic functions, (2) a metrical Markov model de-
scribing chord rhythms, and (3) a Markov model generat-
ing melodies conditionally on a chord sequence. To esti-
mate a variable-length chord sequence for a given melody,
we iteratively refine the latent tree structure and the chord
symbols and rhythms using a Metropolis-Hastings sampler
with split-merge operations. Experimental results show
that the proposed method outperformed the HMM-based
method in terms of predictive abilities.

1. INTRODUCTION
Creation of chord sequences plays a key role in music com-
position and arrangement since harmony affects the mood
of music and characterizes the impression of a certain mu-
sical style. Our aim is automatic melody harmonization, or
automatic generation of a sequence of chord symbols for a
given melody (a sequence of musical notes). In this paper,
we restricted our focus to the problem of harmonization in
the style of popular music. Instead of manually describing
music theories for the style such as jazz and classical mu-
sic, we take a statistical approach to automatically learn
model architectures and parameters from a music corpus
and harmonize in the style of that data. We formulate a
probabilistic model that represents how likely a chord se-
quence is to be generated and another model that represents
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Figure 1: The hierarchical generative model for chord
symbol, chord rhythms, and melodies.

how likely a melody is to be generated conditionally on a
chord sequence.

Since chord sequences are usually described by Markov
models [21, 25], a standard way to statistical harmoniza-
tion is to use a hidden Markov model (HMM) that has a
latent Markov chain of chord symbols and assumes a mu-
sical note sequence to be generated conditionally on the
chords. This approach, however, does not consider the
syntactic roles and hierarchical structure of chords. In
traditional harmony theories (e.g., [14, 22]), such syntac-
tic roles are often referred to as harmonic functions (e.g.,
tonic, dominant, and subdominant), which are similar to
parts-of-speech in language theories. Another problem of
the conventional HMMs lies in the description of the chord
rhythms (onset score times or durations of chords). Since
chord durations are described by self-transition probabili-
ties on a regular time grid (e.g., beat or bar grid), the chord
rhythms are not explicitly described.

To solve these problems, we propose a tree-structured
hierarchical generative model that consists of (1) a proba-
bilistic context-free grammar (PCFG) that generates chord
symbols, (2) a metrical Markov model that generates chord
rhythms, and (3) a Markov model that generates a melody
from a chord sequence (Fig. 1). The use of the PCFG was
inspired by Steedman’s pioneering work [27] that uses a
context-free grammar (CFG) for representing the hierar-
chical structure of chords. A key advantage of our study
is that the rule probabilities and tree structure of the PCFG
can jointly be estimated in an unsupervised manner from
a corpus of chord sequences, expecting that the syntactic
roles of chords are captured by the non-terminal symbols.



The metrical Markov model is used for explicitly describ-
ing transition probabilities between the onset beat positions
of succeeding chords.

Using the tree-structured hierarchical generative model,
we propose a statistical harmonization method based on a
sophisticated Metropolis-Hasting (MH) sampler with split-
merge operations. To estimate a variable-length chord se-
quence with appropriate chord rhythms for a given melody,
we stochastically search for the most likely latent tree
structure, symbols, and onset score times of chords from
their posterior distributions. In this search, our sampler has
four types of proposals: the whole latent tree structure is
updated using a variant of the Viterbi algorithm, one of the
chords is split or two adjacent chords are merged according
to the latent tree structure, and one of the chord onset score
time is moved back or forth. Such stochastic global or lo-
cal updates can be interpreted as a repeated trial-and-error
process of finding an optimal chord sequence.

2. RELATED WORK

This section introduces related studies on the automatic
harmonization and on the music language model for chords
and notes.

2.1 Automatic Harmonization

Some studies on harmonization aim to generate sequences
of chord symbols (as in this paper) and other studies aim
to generate several (typically four) voices of musical notes.
In the former direction, Chuan and Chew [3] proposed a
hybrid method that consists of three processes: selection
of chord tones (constituent tones of chords) from given
melodies with a support vector machine (SVM), construc-
tion of triad chords from chord tones, and generation of
chord progressions by a rule-base method. Simon et al.
[25] developed a method based on HMMs in which chord
transitions are described by Markov models. This method
has been implemented in a commercial system MySong.
Raczyński et al. [21] proposed similar Markov models
in which chords are conditioned by melodies and time-
varying keys. To our knowledge, PCFG has not been used
for melody harmonization.

In the latter direction, Ebcioğlu [5] proposed a rule-
based method for generating four-part chorales in Bach’s
style. Methods by using variants of genetic algorithms
(GAs) based on music theories have also been studied
[18, 19, 28]. Allan and Williams et al. [1] proposed a
method based on HMMs which represent chords as hidden
states and musical notes as observed outputs. A hidden
semi-Markov model (HSMM) [9] has been used for ex-
plicitly representing the durations of chords. Paiement et
al. [17] proposed a hierarchical tree-structured model that
describes chord movements from the viewpoint of hierar-
chical time scales by dividing the notations of chords.

2.2 Music Language Modeling

Several language models for musical notes have been stud-
ied for music structure analysis [10, 11, 13, 15]. According
to the Generative Theory of Tonal Music (GTTM) [13], a
note sequence is assumed to have a hierarchical structure

that describes which notes are important. This theory con-
sists of rules for recursively reducing a note sequence into a
single note. Computational implementation of GTTM and
the analysis of musical pieces using it have been studied
[10, 11]. A probabilistic formulation of GTTM based on
PCFG has been proposed and enabled unsupervised learn-
ing of production rules directly from note sequences [15].

Various language models for chord sequences have been
proposed in the context of automatic chord recognition for
music audio signals [16, 24, 29], music analysis [23, 27],
and music arrangement [6, 20]. The conventional lan-
guage model for chord sequences is n-gram models [6,24].
To avoid the sparseness problem with a large value of n,
smoothing methods have been studied for improving the
predictive ability of the language model [2]. Yoshii et
al. [29] proposed a vocabulary-free infinity-gram model in
which each chord depends on a variable-length history of
chords. Paiement et al. [16] introduced several hidden lay-
ers of state transitions that represent the hierarchical struc-
ture of chords. Some studies attempted to explicitly de-
scribe the generative grammar to represent the hierarchi-
cal structure of chords [20, 23, 27]. Steedman [27] and
Rohrmeier [23] proposed a description of the production
rules for chord sequences. A probabilistic extension is later
studied in the context of music arrangement and unsuper-
vised learning of the probabilities has been performed [20].
In these studies, the lists of non-terminals and production
rules were manually given based on music theories or mu-
sical intuition.

3. PROBABILISTIC MODELING
This section explains how to formulate and train our hi-
erarchical generative model of chords and melodies. In
our model, the PCFG for chord symbols is trained by
unsupervised learning from a corpus of chord sequences
while estimating the latent tree structures behind these se-
quences. The metrical Markov model for chord rhythms
is trained by supervised learning from a corpus including
chord rhythms. The Markov model for pitch sequences
is also trained by supervised learning from paired data of
melodies and chord sequences.

3.1 Model Formulation
The PCFG stochastically generates a sequence of chord
symbols (or simply chords in the following) z = {zn}Nn=1

and the metrical Markov model generates the correspond-
ing onset score times ϕ = {ϕn}Nn=1 described in unit of
16th notes, where N is the number of chords. A subse-
quence of pitches in the melody xn = {xn,i}Ini=1 in the
time span of each chord zn is then generated, where In
is the number of pitches in that time span. Concatenat-
ing all such subsequences, the whole sequence of pitches
x = {xn}Nn=1 is obtained. I =

∑N
n=1 In denotes the

number of melody notes. Let ψn,i be the onset score
time of the melody note corresponding to xn,i and let
ψ = {{ψn,i}Ini=1}Nn=1. ϕn and ψn,i can take integer val-
ues from 0 to 16L − 1, where L is the total number of
measures in the whole melody. Although in the training
phase, we have multiple sequences of chords sequences



and melodies, we formulate here the case of a single se-
quence for notational simplicity. Extension for multiple
sequences is straightforward.

The PCFG G is defined by

G = (V,Σ, R, S), (1)

where V is a set of non-terminal symbols, which are
expected to represent hierarchical structure and syntactic
roles of chords, Σ is a set of terminal symbols (chord sym-
bols), R is a set of rule probabilities, and S is a start sym-
bol (a non-terminal symbol located on the root of a syn-
tax tree). Rule probabilities consist of the following three
types. θA→BC is the probability that a non-terminal sym-
bol A ∈ V branches to non-terminal symbols B ∈ V and
C ∈ V . ηA→α is the probability that A ∈ V emits termi-
nal symbol α ∈ Σ. Each non-terminal symbol A ∈ V has
a coin-toss probability λA that stochastically determines
whether A emits (otherwise A branches). These probabili-
ties should be normalized properly as follows:∑

B,C∈V

θA→BC = 1,
∑
α∈Σ

ηA→α = 1. (2)

We define θA = {θA→BC}B,C∈V , ηA = {ηA→α}α∈Σ,
θ = {θA}A∈V , η = {ηA}A∈V , etc. Similar notations are
used throughout this paper.

The metrical Markov model describes the transition
probabilities for chord onset beat positions (16th-note level
relative score time in a measure) as

p(ϕn|ϕn−1) = πϕ̄n−1,ϕ̄n
, (3)

where ϕ̄n = ϕn mod 16 and πab (0 ≤ a, b < 16) indicates
the transition probability from beat position k to beat po-
sition l. When ϕ̄n ≤ ϕ̄n−1, we interpret that the onset of
chord n is in the next measure.

The Markov model is described with the following tran-
sition probability:

p(xn,m|xn,m−1, zn) = τznxn,m−1,xn,m
, (4)

where τznxn,m−1,xn,m
is the transition probability from pitch

xn,m−1 to pitch xn,m under chord zn. In addition, the
probability of the first pitch in xn is given by p(xn,1|zn).

We put conjugate priors on the parameters of the PCFG
as

θA ∼ Dirichlet(ξA), (5)

ηA ∼ Dirichlet(ζA), (6)

λA ∼ Beta(ιA), (7)

where ξA, ζA and ιA are hyperparameters. Similarly, we
put conjugate priors on the parameters of the Markov mod-
els as follows:

πa ∼ Dirichlet(β), (8)

τ z
x ∼ Dirichlet(γ), (9)

where β and γ are hyperparameters.
To complete the generative model of chords and

melodies, we need to specify a model generating ψ. This
model can be formulated as for the model ofϕ and we omit
the details here since melodies are given as inputs for our
harmonization problem.

3.2 Bayesian Learning

We obtain the model parameters Θ = {θ,η,λ,π, τ} by
the maximum posterior (MAP) estimation. To estimate
the parameters θ, η, and λ of the PCFG, we use a vari-
ant of Gibbs sampling called the inside-filtering-outside-
sampling algorithm [12]. We assume that a chord sequence
z was derived from a latent syntactic tree t. t can be repre-
sented by a set of non-terminal nodes {tn:m}1≤n≤m≤N ,
where tn:m is the root node of a subtree that derives a
subsequence of chords zn:m = {zn, zn+1, · · · , zm}. The
latent tree t and the parameters θ, η, and λ are alter-
nately sampled from the conditional posterior distribu-
tions p(t|θ,η,λ, z) and p(θ,η,λ|t, z). This algorithm is
proven to yield samples of t, θ, η, λ following the true
posterior distribution p(θ,η,λ, t|z).

In the inside filtering step, we focus on the conditional
probability (inside probability) that a subsequence zn:m is
derived from a subtree whose root node is A

pAn,m = p(zn:m|tn:m = A). (10)

This probability can be calculated recursively from the leaf
nodes to the root node as follows:

pAn,n = λAηA→zn , (11)

pAn,n+k =
∑

B,C∈V

[
(1−λA)θA→BC

∑
1≤l≤k

pBn,n+l−1p
C
n+l,n+k

]
.

In the outside sampling step, we recursively sample a
latent tree t from a start symbol S to the leaf nodes ac-
cording to p(t|θ,η,λ, z) by using the inside probabilities.
When a node tn:n+k = A is already sampled, the two non-
terminal symbols B and C into which tn:n+k branches are
sampled as follows:

p(l, B,C)

= p(tn:n+l−1 = B, tn+l:n+k = C | tn:n+k = A, zn:n+k)

= (1− λA)θA→BC p
B
n,n+l−1 p

C
n+l,n+k/p

A
n,n+k, (12)

where 1 ≤ l ≤ k indicates a split position.
Finally, we sample parameters θ, η, and λ according to

p(θ,η,λ|t, z) = p(θ|t, z)p(η|t, z)p(λ|t, z) given by

θA ∼ Dirichlet(ξA + uA), (13)

ηA ∼ Dirichlet(ζA + vA), (14)

λA ∼ Beta(ιA +wA), (15)

where uA→BC (vA→α) is the number of times the binary
production rule θA→BC (the emission rule ηA→α) is used
in t, andwA,0 (wA,1) is the number of times a non-terminal
symbol A branches (emits) and t.

The parameters π and τ of the Markov models are ob-
tained by supervised learning. Given ϕ, the posterior dis-
tribution of π can be calculated easily because of the con-
jugacy between the Dirichlet and categorical distributions.
Similarly, given paired data of z,ϕ, x, andψ, the posterior
distribution of τ can be calculated.



4. AUTOMATIC HARMONIZATION

This section explains how to generate sequences of chords
for a given melody by using the model in Section 3.

4.1 Problem Specification

Given a melody with pitchesx and onset score timesψ and
trained model parameters Θ, we aim to estimate a variable-
length sequence of chords z and their onset score times ϕ
that are not restricted to bar lines. Note that the number of
chords N is not fixed and should be estimated and that a
latent tree t for chords is considered and estimated unlike
conventional harmonization methods.

4.2 Metropolis-Hastings Sampling

We propose a Metropolis-Hastings (MH) sampler with
split-merge operations for generating samples of t, z, and
ϕ from the posterior distribution p(t, z,ϕ|x,ψ,Θ) based
on the following four types of proposals:

• Global update: Update chords z and latent tree t
with a Viterbi algorithm for the PCFG, keeping the
number and score times of chords unchanged.

• Split operation: Randomly choose one of the
chords and split it into two adjacent chords.

• Merge operation: Randomly choose two adjacent
chords in z that form a subtree with two leaves in t
and merge them.

• Rhythm update: Randomly choose one chord n
and move its onset score time ϕn back or forth.

Although it is more proper to use the inside-filtering-
outside-sampling algorithm for the global update, the
Viterbi algorithm is used for efficient optimization in the
posterior space.

In the MH sampling, one of these proposals is randomly
selected. More specifically, the sampler proposes a sam-
ple s∗ = (t, z,ϕ)∗ from a current sample s = (t, z,ϕ).
The sampler then judges whether s∗ is accepted as the next
sample or not according to the acceptance ratio given by

g(s∗, s) = min

{
1,
p(s∗)p(s|s∗)
p(s)p(s∗|s)

}
, (16)

where p(s) is the complete joint likelihood of s based on
the proposed model and p(s∗|s) is a proposal distribution
that should be set appropriately. If the proposal is rejected,
t, z, and ϕ are not updated. In our method, there are three
types of proposal distributions for the second to fourth pro-
posals in the above list. We estimate the most plausible z
and ϕ by iterating the MH sampling a sufficient number of
times and then getting the latent variables that maximize
the likelihood of complete data.

4.3 Updating Chord Symbols

We describe how to update the chord symbols z and the
corresponding latent tree t according to the conditional
posterior distribution p(t, z|ϕ,x,ψ,Θ).

4.3.1 Viterbi Algorithm

Given a melody with pitches x and onset score times ψ,
we can efficiently sample a sequence of chord symbols z

Figure 2: The split-merge operations of the MH sampling.

and the corresponding latent tree t by using the Viterbi al-
gorithm. Our algorithm differs from a standard Viterbi al-
gorithm used for estimating t for a given z because both t
and z are the latent variables to be estimated in this paper.

We first recursively calculate the inside probabilities
from the layer of terminal symbols z to the start symbol
S according to

pAn,n = λA max
c∈Σ

ηA→c p(xn|c)1/In , (17)

pAn,n+k = (1− λA) max
B,C∈V
1≤l≤k

θA→BCp
B
n,n+l−1p

C
n+l,n+k,

where p(xn|c) is the probability that a pitch subsequence
xn is generated conditionally on a chord c:

p(xn|c) = p(xn,1|c)
In∏
i=2

p(xn,i|xn,i−1, c). (18)

The most likely t and z are obtained by recursively back-
tracking the most likely paths from the start symbol S.

4.3.2 Split-Merge Operations

Using the MH sampler, we can split a chord or merge ad-
jacent chords by considering the underlying tree t and the
emission probability of the melody. Note the split and
merge operations are inverse to each other and that the la-
tent tree t is locally updated by these operations (Fig. 2).

In the split operation, a new sample s∗ is proposed
by stochastically selecting a chord zn from z, splitting
zn into zL and zR, selecting the new onset score time
ϕ∗ ∈ (ϕn, ϕn+1) = [ϕn + 1, ϕn+1 − 1], and splitting the
non-terminal symbol tn:n into two non-terminal symbols
tL and tR. The proposal distribution p(s∗|s) is thus

p(s∗|s) =

{
θtn:n→tLtRηtL→zLηtR→zR

N(ϕn+1−ϕn−1) , ϕn+1 ≥ ϕn + 1;

0, otherwise.
(19)

The reverse proposal distribution p(s|s∗), on the other
hand, is same as the proposal distribution for the merge
operation in which a sample s is proposed by stochasti-
cally selecting a pair of adjacent chords zL and zR, merg-
ing those chords into zn, by selecting a chord zn according
to the probability ηtn:n→zn . Thus we have

p(s|s∗) = ηtn:n→zn

#MergeableNodes(s∗)
, (20)

where #MergeableNodes(s∗) is the number of pairs of ad-
jacent chords that can be merged in s∗, i.e., those chords
forming a subtree with two leaves.



The likelihood ratio of p(s∗) to p(s) is then given by

p(s∗)

p(s)
=
(1− λtn:n

)θtn:n→tLtRλtLηtL→zLλtRηtR→zR

λtn:n ηtn:n→zn

· p(x
L|zL)p(xR|zR)p(ϕ∗|ϕn)p(ϕn+1|ϕ∗)

p(xn|zn)p(ϕn+1|ϕn)
,

(21)

where xL and xR are the subsequences of pitches obtained
by splitting xn at the score time ϕ∗. Using Eqs. (19), (20),
and (21), we can calculate the acceptance ratio of s∗ ac-
cording to Eq. (16).

In the merge operation, on the other hand, a new sample
s∗ is proposed in a similar way to the split operation. More
specifically, the acceptance ratio of s∗ given by Eq. (16)
can be calculate by exchanging s and s∗ in Eqs. (19), (20),
and (21). Through the split-merge operations, the number
of chords N is optimized stochastically.

4.4 Updating Chord Rhythms

We describe how to update the chord rhythms ϕ according
to the conditional posterior distribution p(ϕ|t, z,x,ψ,Θ).
A new sample s∗ is proposed by stochastically selecting
a chord n and moving ϕn to a new score time ϕ∗n ∈
(ϕn−1, ϕn+1). The proposal distribution p(s∗|s) and the
reverse proposal distribution p(s|s∗) are given by

p(s∗|s) = p(s|s∗) = 1

N − 1

1

ϕn+1 − ϕn−1 − 1
. (22)

The likelihood ratio of p(s∗) to p(s) is given by

p(s∗)

p(s)
=
p(x∗

n−1|zn−1)p(x
∗
n|zn)p(ϕ∗n|ϕn−1)q(ϕn+1|ϕ∗n)

p(xn−1|zn−1)p(xn|zn)p(ϕn|ϕn−1)p(ϕn+1|ϕn)
,

(23)

where x∗
n−1 and x∗

n are the subsequences of pitches in the
time spans of chords n−1 and n with the new onset score
time ϕ∗n. Using Eqs. (22) and (23), we can calculate the
acceptance ratio of s∗ according to Eq. (16).

5. EVALUATION

In this section, we report two experiments conducted to
quantitatively evaluate the proposed generative model and
the proposed method of automatic harmonization based on
the model and discuss examples of chord sequences gener-
ated by the method.

5.1 Experimental Conditions

To learn the PCFG unsupervisedly, we extracted 1002
chord sequences corresponding to sections (e.g., verse,
bridge, and chorus) from 468 pieces of popular music in-
cluded in the SALAMI dataset [26]. Only those sequences
with a length between 8 and 32 were chosen. The vocab-
ulary of chord symbols was given by the combinations of
12 root notes {C, C#, D, ..., B} and 2 chord types {major,
minor}, and a special “other”. The values of the hyperpa-
rameters were all set to 0.1.

To train the two Markov models in a supervised manner,
we extracted 9902 pairs of melodies and the correspond-
ing chord sequences from 194 pieces of popular music in-
cluded in Rock Corpus [4]. The values of the hyperparam-
eters were all set to 0.1.

In the testing phase, we extracted 339 pairs of melodies
and the corresponding chord sequences as ground-truth
data for evaluation from 69 pieces of popular music in-
cluded in the RWC music database [7, 8]. Note that all the
data (SALAMI, Rock Corpus, and RWC) were transposed
to C major or C minor.

5.2 Evaluating Ability of Melody Prediction
To evaluate the hierarchical generative model based on the
PCFG in terms of the ability of melody prediction, we cal-
culated the marginal likelihood for the melodies extracted
from the RWC music database. The number of kinds of
non-terminal symbols, or the complexity of the PCFG, K
was changed from 1 to 20. In each of cases for K, we ob-
tained different PCFG’s parameters with Gibbs sampling
and calculated the marginal likelihood for each parameter
set. The number of different parameter sets were between
37 and 50 depending on the computational complexity. We
assumed that the chord onsets were completely synchro-
nized with bar lines such that the chord sequences were
marginalized analytically. The proposed model was com-
pared with an HMM that learns the chord-symbol tran-
sition between adjacent units which were either musical
notes or measures. When minimum time units were mu-
sical notes, each note was assumed to be generated con-
ditionally on the chord symbol at the time. When mini-
mum time units were musical measures, notes accompa-
nying each chord were assumed to be generated according
to the probability described in Eq. (4).

The marginal likelihood of the trained model parame-
ters Θ for an unseen melody X with ψ can be calculated
with the inside algorithm in Section 3.2. To sum over all
possibilities of a latent chord sequence Z and a latent tree
T , pAi,i in Eq. (11) is replaced with

pAi,i = λA
∑
c∈Σ

ηA→c p(Xi|c), (24)

where p(Xi|c) is given by Eq. (18). The average marginal
likelihood L per note for the melody is given by

L =
1

I
log p(X|ψ,Θ) =

1

I
log pS0,N−1, (25)

where I (N ) is the number of notes (chords).
The experimental results are shown in Fig. 3. The pro-

posed model outperformed the HMM, whether the mini-
mum time unit is a musical note (L = −3.2813) or a mea-
sure (L = −2.3218). The likelihood tended to decrease as
the value ofK increased to eight, and the likelihood tended
to increase as the value of K increased beyond eight.

5.3 Evaluating Predictive Ability of Chord Sequences
To evaluate the proposed harmonization method in terms
of the predictive ability of unseen chord sequences, we
generated chord sequences for the melodies of the RWC



Figure 3: Marginal likelihood for melodies per note. In
this box plots, the red line, the black cross and red crosses
indicate the median, the mean and outliers, respectively.

Figure 4: Accuracy of harmonization per note. Indicators
in this box plots are the same as those in Fig. 3

music database and calculated the accuracy at a 16th-note
level compared with the ground-truth. The complexity of
the PCFG, K was changed from 1 to 20. The proposed
method was compared with a conventional HMM-based
method that represents chord transitions on a 16th-note-
level grid.

The experimental result are shown in Fig. 4. The
proposed model clearly outperformed the HMM-based
method with an accuracy of 16.6 %. While a certain range
of K showed much higher accuracy (e.g., 26 %) than the
HMM-based method, there was little correlation between
K and the median values of accuracies.

5.4 Generated Example and Discussion

Fig. 5 shows how the proposed MH sampling method with
split-merge operations worked for automatic harmoniza-
tion1 . The number of kinds of non-terminal symbols, K,
was set to 12. The chord sequence at the top shows an ini-
tial sample in which the chord symbols were optimized by
the Viterbi algorithm, but the chord onsets were located at
the bar lines. The second chord sequence shows a sam-
ple proposed by moving the onset positions of 5th and
6th chords (G major and C major). The third chord se-
quence shows a sample proposed by merging the 7th and
8th chords (F major and C major) into one chord (C ma-
jor). The bottom chord sequence shows the best sample
that maximizes the likelihood for the given melody. In
each of the processes, the likelihood increased. The result
indicates that the proposed method can successfully gen-

1 Some chord sequences generated in this experimental are available
online: http://anonym9329.github.io/demo.html

Figure 5: Sampling-based estimation of the most likely
chord sequence for a given melody.

erate a variable-length sequence of chords by considering
the latent tree structure behind the chord sequence.

We found some problems to be tackled in the future.
The proposed method tended to generate simple chords
(e.g., C major and A minor). This is because the chord
symbols were refined by using the Viterbi algorithm. In
addition, the number of the most plausible chord sequences
selected in our experiment was rarely more than those ini-
tialized at the beginning of sampling. This is because the
proposals of the split operation were accepted less fre-
quently than the proposals of the merge operation.

6. CONCLUSION

This paper presented an automatic harmonization method
that generates a variable-length chord sequence for a given
melody based on music rules hidden in corpora of popular
music. The experimental results showed that the proposed
model outperformed the HMM-based method in terms of
predictive ability and has a large potential for statistical
music composition or arrangement.

Since our method is based on statistical learning, it was
found to prefer simpler and basic chord sequences. More
specifically, the number of generated chords tends to be
less than the number of measures. This problem could be
solved by giving more chances to the split operation in
MCMC sampling. To increase the diversity of generated
chord symbols, a sampling or beam-search method is con-
sidered to be effective instead of the Viterbi algorithm that
tends to find a popular chord sequence that has the highest
posterior probability from the statistical viewpoint.

We still need further studies on our model. In this pa-
per, one measure with the time signature of 4/4 is divided
into 16 time units. It is therefore important to investigate
the best time resolution and extend the model to deal with
other kinds of time signatures. In addition, to evaluate the
musical appropriateness of generated chord sequences, we
plan to conduct a subjective listening test and evaluate how
consistent our model is with music theories or musical in-
tuition.
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[5] K. Ebcioğlu. An expert system for harmonizing four-
part chorales. Computer Music Journal, 12(3):43–51,
1988.

[6] S. Fukayama, K. Yoshii, and M. Goto. Chord-
sequence-factory: A chord arrangement system mod-
ifying factorized chord sequence probabilities. In IS-
MIR, 2013.

[7] M. Goto. Aist annotation for the RWC music database.
In ISMIR, pages 359–360, 2006.

[8] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.
RWC music database: Popular, classical and jazz mu-
sic databases. In ISMIR, volume 2, pages 287–288,
2002.

[9] R. Groves. Automatic harmonization using a hidden
semi-Markov model. In Proceedings of the Artifi-
cial Intelligence and Interactive Digital Entertainment
Conference (Boston, MA), pages 48–54, 2013.

[10] M. Hamanaka, K. Hirata, and S. Tojo. Implementing
‘A generative theory of tonal music’. Journal of New
Music Research, 35(4):249–277, 2006.

[11] M. Hamanaka, K. Hirata, and S. Tojo. Musical struc-
tural analysis database based on GTTM. In ISMIR,
pages 325–330, 2014.

[12] M. Johnson, T. L. Griffiths, and S. Goldwater. Bayesian
inference for PCFGs via Markov chain Monte Carlo. In
North American Chapter of the Association for Com-
putational Linguistics Human Language Technologies
(NAACL-HLT), pages 139–146, 2007.

[13] F. Lerdahl and R. Jackendoff. A Generative Theory of
Tonal Music. MIT press, 1985.

[14] W. Maler. Beitrag zur Durmolltonalen Harmonielehre
I (7th ed.). F. E. C. Leuckart, 2007.

[15] E. Nakamura, M. Hamanaka, K. Hirata, and K. Yoshii.
Tree-structured probabilistic model of monophonic
written music based on the generative theory of tonal
music. In IEEE ICASSP, pages 276–280, 2016.

[16] J. F. Paiement, D. Eck, and S. Bengio. A probabilistic
model for chord progressions. In ISMIR, pages 312–
319, 2005.

[17] J. F. Paiement, D. Eck, and S. Bengio. Probabilistic
melodic harmonization. In Conference of the Cana-
dian Society for Computational Studies of Intelligence,
pages 218–229, 2006.

[18] G. Papadopoulos and G. Wiggins. AI methods for al-
gorithmic composition: A survey, a critical view and
future prospects. In AISB Symposium on Musical Cre-
ativity, pages 110–117, 1999.

[19] R. D. Prisco and R. Zaccagnino. An evolutionary mu-
sic composer algorithm for bass harmonization. Ap-
plications of Evolutionary Computing, pages 567–572,
2009.

[20] D. Quick. Learning production probabilities for mu-
sical grammars. Journal of New Music Research,
45(4):295–313, 2016.
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