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ABSTRACT
This paper describes a music arrangement method of popular music
that can convert a band score into a piano score with a steplessly-
specified level of performance difficulty. The basic strategy of band-
to-piano score arrangement is to select notes from an augmented
band score obtained by up- and down-shifting the notes of an original
band score by one octave. Given band scores and the corresponding
piano scores with elementary- and advanced-levels, one can train a
deep neural network (DNN) that estimates note masks conditioned
by the difficulty levels. Conditioned by an intermediate level at run-
time, however, the DNN tends to generate an advanced-level score.
To solve this problem, assuming that an easier piano score is a subset
of harder one, we estimate the basic importance of each note with a
difficulty-agnostic DNN and then warp it with a power function de-
pending on a specified difficulty level. To achieve the fine controlla-
bility of the difficulty level, we propose a training method that sub-
jects the DNN to generating piano scores with various intermediate
levels, where the note-level loss for those scores is evaluated using
only the ground-truth elementary- and advanced-level scores. Con-
sidering the non-uniqueness of piano arrangement, the statistic-level
loss with respect to the note density and polyphony level is also com-
puted according to the given levels. The experimental results showed
that the proposed method attained both the performance gain and the
stepless difficulty control.

Index Terms— Automatic piano arrangement, score reduction,
symbolic music processing, deep learning

1. INTRODUCTION
One typical way of music arrangement is to change the instrumenta-
tion of a musical piece while preserving its essential musical content
(rhythm, melody, and harmony). Much effort has been devoted to
automatic piano arrangement [1–5], guitar arrangement [6–8], and
orchestration [9–11]. In this paper we tackle piano arrangement of
band music with stepless difficulty control.

One of the most important requirements in band-to-piano score
arrangement is to allow a user to steplessly control the difficulty level
of the generated piano score according to his or her skill and pref-
erence (Fig. 1). If a user gradually moves the slider of the difficulty
level from the elementary level to the advanced level, it would be bet-
ter in terms of usability that the generated piano score also changes
gradually, i.e., notes are added gradually. The underlying assump-
tion is that an easier-level piano score can be obtained as a subset of a
harder-level score if both scores originate from the same band score.
Since the music arrangement is a challenging one-to-many mapping
task, this assumption can effectively reduce the search space.
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Fig. 1. The proposed band-to-piano score arrangement system with
stepless difficulty control.

The score reduction approach has typically been taken for band-
to-piano score arrangement. One can obtain a piano score by se-
lecting notes from an augmented band score obtained by up- and
down-shifting the notes of an original band score by one octave.
Given paired data of band scores and the corresponding piano ar-
rangements, which are typically categorized into only elementary
and advanced levels, one can train a DNN that estimates masks used
for note selection, conditioned by the difficulty levels [12]. Con-
ditioned by an unseen intermediate level at run-time, however, the
DNN trained with binary conditions tends to generate an advanced-
level piano score.

Under these circumstances, we propose a difficulty-controllable
band-to-piano score arrangement method based on the score reduc-
tion approach (Fig 2). This method estimates the basic importance
φ of each note in an augmented band score with a difficulty-agnostic
DNN and then warps it with a difficulty-dependent power function
φα, where a harder level takes a smaller α. If the resulting impor-
tance φα exceeds a threshold, the notes is selected to be included in
the piano arrangement. The estimated importance φα is thus guar-
anteed to monotonically increase according to the difficulty level.
Thanks to the differentiable warping function, the DNN and the val-
ues of α for the elementary and advanced levels can be optimized
jointly using paired data consisting of only these two levels. The
value of α between these two values can then be used for an inter-
mediate level.

To improve the controllability of the difficulty level at run-time,
i.e., to let the generated piano score steadily change from the elemen-
tary level to the advanced level, we subject the DNN to generating
piano scores with various intermediate levels not limited to the el-
ementary and advanced levels in the training phase. The essential
problem is that such generated piano scores cannot be evaluated be-
cause only the elementary and advanced piano scores are given as
the ground-truth data.

Considering the non-uniqueness of band-to-piano score arrange-
ment as suggested in [12], we propose a regularized training method
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Fig. 2. Comparison of the conventional and proposed methods. The
conventional method directly estimates the selection probability for
each note of a band score with a DNN conditioned by a difficulty
level. The proposed method first estimates the basic selection prob-
ability for each note with a difficulty-agnostic DNN and then warps
it according to the difficulty level.

based on note- and statistic-level (instance- and distribution-level)
criteria that can evaluate piano scores with arbitrary difficulty levels.
When a piano score with a randomly-sampled level is generated, its
note-level loss is a weighted sum of the loss using available ground-
truth scores. To regularize the training, the statistic-level loss of the
generated score is also introduced such that the distributions of the
note densities and the polyphony levels are made close to those cor-
responding to the randomly-sampled level.

The main contribution of this study is to propose neural piano
arrangement based on note importance estimation for run-time step-
less difficulty control. We experimentally investigate the potential of
note importance estimation in difficulty control and the effectiveness
of considering the both the note- and static-level losses.

2. RELATED WORK
A standard approach to piano arrangement of multi-instrument mu-
sic (e.g., orchestra and popular music) is score reduction based on
note selection. Huang et al. [11] proposed an orchestration method
that generates a score of a specified musical instrument from a score
of ensemble music by segmenting the instrument tracks in terms
of musical content, determining their musical roles (e.g., lead and
pad), and selecting phrases. Takamori et al. [3] proposed a band-to-
piano arrangement method that focuses on musical content such as
melodies, chords, rhythms, and the number of notes extracted from
an original score. This method selects accompaniment patterns from
a database of accompaniment parts collected from piano scores of
popular music. They further attempted piano arrangement from au-
dio data [13]. Wang et al. [14] pointed out that the use of predefined
accompaniment parts leads to a limited variety of arrangements and
thus used a DNN for flexible piano arrangement. These arrangement
methods focus on the constraints of piano scores in terms of the note
density and the number of simultaneous notes.

The player’s performance skill has recently been considered as
an important factor for music arrangement. Nakamura et al. [4]
pointed out that the weights of the constraints on piano score should
be varied according to the player’s skill and that more strict con-
straints are needed for elementary-level players. They proposed a
method that represents the performance difficulty as a continuous
variable and also compared the difficulty levels in terms of the fre-
quency of performance errors. Our previous band-to-piano arrange-
ment method can generate only elementary- and advanced-level pi-
ano scores, where the note statistics are considered to deal with the
non-uniqueness of piano arrangement [12].

3. PROPOSED METHOD

This section describes the proposed method that converts a band
score into a piano score with an arbitrary difficulty level.

3.1. Problem Specification

Our goal is to convert a band score X , {XA,XM} into a piano
score Y , {YL,YR} with an arbitrary difficulty level γ ∈ [0, 1],
where XA , {OA,PA} and XM , {OM,PM} represents the con-
densed accompaniment part and the melody (vocal) parts, respec-
tively, and YL , {OL,PL} and YR , {OR,PR} represent the left-
and right-hand parts, respectively. Each part is represented as an on-
set matrix O∗ ∈ {0, 1}P×N and a pitch matrix P∗ ∈ {0, 1}P×N
(∗ ∈ {A,M,L,R}), where P represents the number of pitches
(P = 128) and N represents the number of tatums (sixteenth notes)
of the piece. In the melody part of the band score, for example,
OM(p, n) = 1 represents the presence of an onset at pitch p and
tatum n and PM(p, n) = 1 represents the presence of pitch p at
tatum n. Let h ∈ {L,R} denote the left or right hand part.

To train a DNN-based conversion model, we use pairs of band
and piano scores as training data. Note that each X in the training
data is associated with a piano score Y with either of the elementary
and advanced levels, i.e., intermediate-level piano scores are not in-
cluded in the training data.

3.2. Score Reduction Approach

We take the score reduction approach to band-to-piano arrangement.
The statistical analysis of existing piano arrangements showed that
on average, 92% of the notes on the right-hand part and 81% of the
left-hand part are derived from the notes from an augmented band
score obtained by up- and down-shifting the notes of an original band
score by one octave [12]. This fact justifies the assumption underly-
ing our score reduction approach that a reasonable piano score can be
obtained by selecting important notes, with octave shifts if necessary,
from an augmented band score, i.e., a piano score can be obtained as
a subset of an augmented band score. Let OB ∈ {0, 1}P×N be an
augmented onset matrix given by

OB(p, n) = max
j∈{−12,0,12}

(OA(p+ j, n),OM(p+ j, n)) , (1)

where j ∈ {−12, 0, 12} represents the octave shift.
Given a difficulty level γ, we estimate selection probability (note

importance) matrices π , {πL,πR} for the notes of an augmented
band score, where πL,πR ∈ [0, 1]P×N represent the importance
matrices used for estimating the left- and right-hand parts of the pi-
ano score. The note importance is defined at only the note onsets
of the augmented band score, i.e., if OB(p, n) = 0, πL(p, n) =
πR(p, n) = 0. The piano onset matrices OL and OR are obtained
by binarizing πL and πR with a threshold, respectively. The piano
pitch matrices PL and PR are determined by referring to the onsets
and durations of the selected notes of the augmented band score.

3.3. Supervised Training

In the training phase, a pair of a band score X and the corresponding
elementary- or advanced-level piano score Y is given. A lot of such
pairs are given as training data in practice, but no intermediate-level
piano scores are available, i.e., only elementary- and advanced-level
piano scores can be used as target data. Using such training data, we
jointly optimize the U-Net parameters and the power exponents α0

and α1 corresponding to the elementary and advanced levels. A key
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Fig. 3. The detailed architecture of the U-Net. The numbers in the
parentheses represent the change in the number of channels. Skip
connection denotes concatenation of channels.

feature of the proposed method is that piano scores with randomly-
sampled difficulty levels not limited to the elementary and advanced
levels are generated in the training phase.

We first estimate difficulty-independent importance matrices
φ , {φL,φR} with a convolutional neural network (CNN) called
the U-Net [15] that takes the band score X as input (Fig. 3), where
φL,φR ∈ [0, 1]P×N represent the basic importance values over the
pitch-tatum space used for estimating the left- and right-hand parts,
respectively. To estimate the difficulty-dependent matrices π, we
then warp φ with an element-wise power function as follows:

πL = φ
αγ

L �OB, πR = φ
αγ

R �OB, (2)

where � denotes the element-wise product and αγ is a power ex-
ponent depending on the difficulty level γ ∈ [0, 1]. Note that a
lower αγ is used for a higher level γ, i.e., α0 ≥ αγ ≥ α1 and
φα0

h ≤ φ
αγ

h ≤ φα1
h (Fig. 4). The power exponent αγ correspond-

ing to an intermediate level γ is computed with linear interpolation
between α0 and α1 corresponding to the elementary and advanced
levels (optimized as explained later) as follows:

αγ = (1− γ)α0 + γα1. (3)

Using a difficulty-independent threshold for πL and πR, a larger
number of notes are selected for a higher-level piano score.

Considering the non-uniqueness of piano arrangement, the im-
portance matrices π given by Eq. (2) are evaluated at the note and
statistic levels (instance and distribution-level matching). When a
target level γ is equal to the difficulty level (0 or 1) of the ground-
truth piano score, the note- and statistic-level losses can be computed
in the same way as [12]. We here propose a novel regularized train-
ing method that minimizes the sum of the note- and statistic-level
losses computable for an arbitrary level γ.

3.3.1. Note-Level Loss

We define the note-level loss for evaluating the importance matrices
π estimated for a difficulty level γ ∈ [0, 1]. If the ground-truth onset
matrices O , {OL,OR} of the left- and right-hand parts with the
same difficulty level γ are available, one can use the modified binary
cross entropy defined as follows:

BCE(π,O) = −
∑

h∈{L,R}

P∑
p=1

N∑
n=1

(
w ·Oh(p, n) logπh(p, n)

+
(
1−Oh(p, n)

)
log
(
1− πh(p, n)

))
, (4)

where w ≥ 0 is a weighting factor used for compensating for the
imbalance of the numbers of onset and non-onset frames (w = 4 in
this paper). This strategy, however, cannot be applied to the case of
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Fig. 4. Note importance warping with power functions.

γ /∈ {0, 1}. We thus propose to use the following loss:

Lnt =

{
(1− γ)BCE(π,O) if level(O) = 0,

γBCE(π,O) if level(O) = 1,
(5)

where level(O) represents the difficulty level of O. For example,
when γ = 0.3 (closer to the elementary level), the binary cross
entropy of π for the elementary- or advanced-level piano score is
considered with a wight of 0.7 or 0.3, respectively.

3.3.2. Statistic-Level Losses

We define the statistic-level losses used for regularizing the super-
vised training of the U-Net with the note-level loss. Let Clv

h (n) de-
note the polyphony level (the number of concurrent pitches) at tatum
n, and let Cds

h (m) denote the note density (the number of onsets in
a measure) at measure m, in the estimated piano onset matrices O
(h ∈ {L,R}), which are given by

Clv
h (n) =

P∑
p=1

Oh(p, n), Cds
h (m) =

∑
n∈G(m)

P∑
p=1

Oh(p, n). (6)

where G(m) represents the set of tatum indices in measure m. Note
that the piano onset matrices OL and OR are stochastically deter-
mined according to πL and πR, respectively, in a differentiable man-
ner with the gumbel sigmoid function [16], instead of performing
simple thresholding used at run-time.

We then compute the empirical distribution (histogram) Qd
h ∈

[0, 1]I
d+1 by normalizing the tatum- or measure-level frequencies

Cd
h over all possible values, where Id represents the maximum

polyphony level or the maximum note density and d ∈ {lv, ds}
represents the polyphony level or the note density.

We aim to make the histogram Qd
h close to the ground-truth

histogram Q̄d
h,γ corresponding to the difficulty level γ in a distri-

butional sense. What we can do with the training data, however,
is to estimate the ground-truth histograms Q̄d

h,0 and Q̄d
h,1 from the

existing elementary- and advanced-level piano scores, respectively.
Another key feature of the proposed method is to estimate the in-
termediate histogram Q̄d

h,γ with Wasserstein interpolation between
Q̄d

h,0 and Q̄d
h,1 [17]. The static loss with respect to d ∈ {lv, ds} is

given by the Jensen-Shannon (JS) divergence as follows:

Ld =
∑

h∈{L,R}

DJS

(
Q̄d

h,γ ‖ Qd
h

)
. (7)

4. EVALUATION
This section reports an experiment conducted for evaluating the ef-
fectiveness of the proposed method.

4.1. Experimental Conditions
We collected 184 pairs of band and piano scores (85 elementary-
level arrangements and 99 advanced-level arrangements). We used
randomly-chosen 138 pairs as a training set, and the remaining 46
pairs as a test set. We set the analysis window size to 12 measures



Table 1. The F-measures were evaluated for the ground-truth scores (left side of slash) and for their modified version obtained by removing
notes not included in the augmented scores (right side of slash). The statistic-level losses were measured for three difficulty levels γ = 0, 0.5, 1

Losses F [%] Llv (×102) Lds (×102)
Lnt Llv Lds Lnt

med Llv
med Lds

med Left Right Elm Med Adv Elm Med Adv
Conventional X 20.9 / 22.8 55.3 / 58.0 15.3 12.6 11.4 5.54 17.2 10.1

Proposed

X 25.3 / 28.0 56.2 / 58.6 15.9 8.82 8.43 5.43 3.55 5.35
X X X 25.2 / 27.5 57.9 / 60.7 11.0 7.41 9.66 4.81 4.11 9.70

X 24.8 / 26.7 57.8 / 60.6 11.4 9.29 13.4 9.65 7.63 13.9
X X X 24.8 / 26.8 55.9 / 58.4 11.4 7.96 13.7 6.87 5.43 14.6
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Fig. 5. The distributions of polyphony levels for the left- and right-
hand parts with difficulty levels γ = 0, 0.5, 1. The top row shows
the ground-truth distributions for γ = 0, 1 and their barycenter for
γ = 0.5. The middle and bottom rows show the distributions com-
puted from piano scores estimated by the conventional and proposed
methods.

and assumed the time signature to be 4/4. When the length of a mea-
sure was shorter than 16 tatums, it was fill with silent. Conversely,
when a measure was longer than 16 tatums, the first 16 tatums were
preserved. Data augmentation was performed on the training set by
transposing the keys by from 1 to 11 semitones.

For the U-Net, we set the kernel size to 4, stride to 2, and
padding to 1. Dropout (p = 0.5) was applied to all the deconvolu-
tional layers. The Adam optimizer with a learning rate of 10−4 was
used for training [18]. We set the threshold to 0.5. The note-level
and statistic-level losses were treated equally.

4.2. Experimental Results
We examined ground-truth piano scores and investigated how much
notes of the elementary-level scores were included in the advanced-
level scores. In 55 pairs of elementary- and advanced-level piano
scores, 75% of the right-hand notes and 47% of the left-hand notes
of the elementary-level scores were included in the advanced-level
scores. This result shows that for the right-hand part the assumption
that an elementary-level score is a subset of an advanced-level score
is appropriate, and for the left-hand part the assumption might not
hold. Considering the non-uniqueness of piano arrangement, this
assumption still seemed reasonable for our task to effectively reduce
the solution space.

Table 1 shows the evaluation results. The proposed method out-
performed the conventional method in terms of not only F but also
Llv andLds. We found thatLlv andLds were reduced for intermedi-
ate levels. Using intermediate scores (Lmed) with random difficulty
levels was not found to be effective. Fig. 5 shows that the proposed
method is capable of fine control at intermediate levels.

Fig. 6 shows examples of piano arrangement estimated with the
proposed model trained with the statistic-level losses without the in-

Ground-truth

Fig. 6. The output piano score Y estimated by the model optimized
with Lnt +Llv +Lds for a difficulty level γ. The larger γ, the more
difficult the piano score. The red notes represent the notes added to
the one-step easier score.

termediate losses, where γ represents the difficulty level. It was ob-
served that the more difficult the piano score, the greater the number
of notes (see other examples on our webpage1).

5. CONCLUSION

We proposed a neural piano arrangement method that can control
the difficulty levels of output piano scores in a stepless manner. This
method uses a difficulty-agnostic U-Net for estimating the basic im-
portance of each note in an augmented band score and then warps
it with a power function depending on a specified difficulty level.
Given a band score, an easier-level piano score can thus be obtained
as a subset of harder-level one.

Experimental results showed that the regularized training with
the note- and statistic-level losses improved the onset match rate and
statistical characteristics. We quantitatively confirmed that the pro-
posed method can control the difficulty level steplessly. On the other
hand, we have observed that the intermediate loss does not effec-
tively improve the onset match rate and statistic distance. We plan to
conduct a subjective evaluation experiment to examine the validity
of the output piano scores for human performance.

1https://teraomoyu.github.io/difficulty-controllable-piano-
arrangement.github.io/



6. REFERENCES

[1] S. Chiu, M. Shan, and J. Huang, “Automatic system for the
arrangement of piano reduction,” in Proc. International Sym-
posium on Multimedia, 2009, pp. 459–464.

[2] S. Onuma and M. Hamanaka, “Piano arrangement system
based on composers’ arrangement processes,” in Proc. Inter-
national Computer Music Conference, 2010, pp. 191–194.

[3] H. Takamori, H. Sato, T. Nakatsuka, and S. Morishima, “Au-
tomatic arranging musical score for piano using important mu-
sical elements,” in Proc. Sound and Music Computing Confer-
ence, 2017, pp. 35–41.

[4] E. Nakamura and K. Yoshii, “Statistical piano reduction con-
trolling performance difficulty,” APSIPA Transactions on Sig-
nal and Information Processing, vol. 7, no. e13, pp. 1–12,
2018.

[5] Z. Wang, K. Chen, J. Jiang, Y. Zhang, M. Xu, S. Dai, X. Gu,
and G. Xia, “Pop909: A pop-song dataset for music arrange-
ment generation,” in Proc. International Society for Music In-
formation Retrieval, 2020, pp. 38–45.

[6] D. Tuohy and WD. Potter, “A genetic algorithm for the auto-
matic generation of playable guitar tablature,” in Proc. Inter-
national Computer Music Conference, 2005, pp. 499–502.

[7] Y. Yoshinaga, S. Fukayama, H. Kameoka, and S. Sagayama,
“Automatic arrangement for guitars using hidden Markov
model,” in Proc. Sound and Music Computing Conference,
2012, pp. 450–456.

[8] G. Hori, H. Kameoka, and S. Sagayama, “Input-output HMM
applied to automatic arrangement for guitars,” Journal of In-
formation Processing, vol. 21, no. 2, pp. 264–271, 2013.

[9] H. Maekawa, N. Emura, M. Miura, and M. Yanagida, “On ma-
chine arrangement for smaller wind-orchestras based on scores
for standard wind-orchestras,” in Proc. International Confer-
ence on Music Perception and Cognition, 2006, pp. 268–273.

[10] L. Crestel and P. Esling, “Live orchestral piano, a system for
real-time orchestral music generation,” in Proc. Sound and
Music Computing Conference, 2017, pp. 434–442.

[11] J. Huang, S. Chiu, and M. Shan, “Towards an automatic music
arrangement framework using score reduction,” ACM Trans-
actions on Multimedia Computing, Communications, and Ap-
plications, vol. 8, no. 1, pp. 8:1–8:23, 2012.

[12] M. Terao, Y. Hiramatsu, R. Ishizuka, Y. Wu, and K. Yoshii,
“Difficulty-aware neural band-to-piano score arrangement
based on note- and statistic-level criteria,” in Proc. IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing, 2022, pp. 196–200.

[13] H. Takamori, T. Nakatsuka, S. Fukayama, M. Goto, and
S. Morishima, “Audio-based automatic generation of a piano
reduction score by considering the musical structure,” in Proc.
International Conference on Multimedia Modeling, 2019, pp.
169–181.

[14] Z. Wang, D. Xu, G. Xia, and Y. Shan, “Audio-to-symbolic
arrangement via cross-modal music representation learning,”
in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing, 2022, pp. 181–185.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” in Proc.
International Conference on Medical image computing and
computer-assisted intervention, 2015, pp. 234–241.

[16] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization
with Gumbel-Softmax,” in Proc. International Conference on
Learning Representations, 2017.

[17] M. Agueh and G. Carlier, “Barycenters in the Wasserstein
space,” in SIAM Journal on Mathematical Analysis, 2011, pp.
904–924.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in The International Conference on Learning Rep-
resentations (ICLR), 2015.


