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Abstract—This study investigates the use of music language
models (LMs) in singing MIDI transcription, the task of esti-
mating the pitch, onset time, and offset time of each note in the
vocal part from a musical audio signal. While recent studies have
investigated acoustic models that predict pitch frame by frame
using deep neural networks (DNNs), transcription errors remain
due to large pitch fluctuations and ambiguous note boundaries
in singing. To address this issue, we formulate Markov- and
DNN-based LMs that estimate pitch probabilities at the note
level, and integrate them with a DNN-based acoustic model using
two methods: generative modeling and the sequential transducer.
Experimental results show that both integration methods signif-
icantly improve transcription accuracy over a baseline acoustic
model. Moreover, different strengths and characteristics of the
compared LMs and integration methods are discussed.

I. INTRODUCTION

Singing MIDI transcription, a task of automatic music
transcription (AMT), is the problem of extracting the pitch,
onset time, and offset time of each note of the singing part
from a music audio signal. It is a foundational and challeng-
ing information processing technique for music analysis and
retrieval [1]. An effective approach to this problem, as well
as related tasks of singing F0 extraction [2] and singing score
transcription [3], is the application of deep learning, which has
progressively achieved increasing accuracies [4]–[7]. However,
the current state-of-the-art methods [5]–[7] still suffer from
estimation errors due to significant pitch variations, ambiguous
note boundaries, and the presence of chorus parts in singing
voices. Another challenge of the task is that a relatively small
amount of training data can be used for research, which is
different from the situation of analogous tasks such as piano
transcription [8] and automatic speech recognition (ASR) [9].

A solution to reduce estimation errors is to use language
models (LMs) that allow the calculation of the prior probability
of output symbols, i.e. musical notes in music transcription
and words in ASR. As they can incorporate prior knowledge
or regularities in the output sequence, previous studies have
reported successful results by integrating music LMs for music
transcription tasks [10]–[12]. This study’s purpose is to exam-
ine the potential of music LMs for singing MIDI transcription.

To integrate music LMs with deep neural network (DNN)-
based transcription method, a new formulation is necessary for
singing MIDI transcription because we require strict onset and
offset times of pitches and rests unlike in the problem of ASR
or music score transcription. As reviewed in Sec. II, there are
several candidates in the types of LMs and in their integration
methods, each exhibiting distinct advantages and limitations.
As note-level music LMs, we formulate Markov model and
recurrent neural network (RNN)-based model that can be
efficiently trained using symbolic musical score data. We
formulate integration methods based on two major approaches
used for ASR, namely, generative modeling [13] and the
sequential transducer [14], [15]. Based on these formulations,
we construct several transcription algorithms and quantitatively
compare their performances through evaluation experiments,
drawing insights into the effectiveness of LM integration.

Our contributions are summarized as follows.
• General formulations for integrating music LM for mono-

phonic MIDI transcription that can be applied to integrate
a wide class of LMs and a wide class of DNN-based
transcription methods.

• Empirical results providing insights for the potentials of
the generative modeling and transducer approaches.

II. BACKGROUND: LANGUAGE MODEL INTEGRATION FOR
AMT AND ASR

A. Types of Music Language Models
Since music exhibits diverse forms and representations,

various types of music LMs have been employed for AMT.
Regarding the temporal units used for language modeling,
frame-level units were adopted in [16], [17], tatum-level units
in [11], [18], and note-level units in [3], [12]. While the use
of frame- and tatum-level units enables the modeling of poly-
phonic music in a general framework, it poses challenges for
capturing musically meaningful structures beyond repetitive
pitch patterns [18]. Accordingly, note-level LMs are generally
considered more effective for monophonic music transcription.

Another important aspect of music LMs is their architectural
design. Markov models have been employed for monophonic



modeling [3], [12], while deep generative models such as
RNNs have been applied to polyphonic modeling [16], [17].
Given a sufficient amount of training data, DNN-based LMs
can often achieve strong predictive performance.

Given this background, we investigate note-level LMs con-
structed using both Markov and DNN-based models. To the
best of our knowledge, the integration of a note-level DNN-
based LM for singing transcription or other AMT has not been
explored previously.

B. Methods of Language Model Integration

In AMT or AST, a frame-level recognition model (referred
to as acoustic model) is typically constructed and integrated
with a LM. Two major approaches to LM integration, orig-
inally developed for ASR, are generative modeling [13] and
the sequential transducer [14]. In the former method, a proba-
bilistic model is formulated to represent the generative process
of acoustic features, and the LM is incorporated as a prior
distribution over output symbols. During inference, output
symbols are obtained by maximizing the posterior probability.
In the latter method, both the output of the acoustic model and
the predictions from the LM are fed into a DNN that estimates
the final output symbols.

The generative modeling approach is most effective when
used with a Markov LM, as the optimal sequence of output
symbols can be efficiently computed using the Viterbi algo-
rithm. For DNN-based LMs, approximate inference methods
such as beam search are typically employed. A limitation of
this approach is that it often requires a customized model
formulation for each acoustic model, depending on its output
type. In contrast, the transducer approach is applicable to
a wider range of LMs and acoustic model architectures.
However, a drawback of this method is that it does not
permit exact inference over the entire output sequence; instead,
approximate methods such as greedy or beam search must
be used during inference. Since the optimal method for LM
integration in AMT remains unclear, we investigate both of
the two approaches in this study.

III. PROPOSED METHOD

A. Problem Specification

We aim to estimate the musical note sequence of a singing
part from a musical audio signal. We first apply Demucs
v4 [19] to extract the singing voice. Then, we obtain mel-
spectrograms with a hop length of 10 ms from both the original
signal and the separated singing signal, which are denoted as
[xtdf ]

T,F
t=1,f=1, where d indexes the channel (1 for the original

mixture, 2 for the singing part), T is the number of frames,
and F (= 128) is the number of frequency bins. The input
to the proposed system is the combination of the two mel-
spectrograms, denoted as X := [xt]

T
t=1 ∈ RT×2×F , where

xt := [xtdf ]
2,F
d=1,f=1. The output note sequence is represented

as (tonl , toffl , pl)
L
l=1, where tonl and toffl are the onset and offset

times, and pl ∈ {0, . . . , 127} is the pitch (MIDI note number)
of the l-th note. L denotes the number of notes.

𝑡 1 2 3 4 5 6 7 8 9 10 11

෤𝑝𝑡 62 62 62 62 128 128 60 60 60 60 60

𝑝′𝑡 62 129 129 129 128 128 60 129 60 129 129

𝑏𝑡 1 0 0 0 0 0 1 0 1 0 0

𝑐𝑡 1 2 3 4 1 2 1 2 1 2 3

𝑙(𝑡) 1 1 1 1 1 1 2 2 3 3 3

Pitch 62

60 60

Fig. 1. Data Representation: frame index t, pitch including rest p̃t, raw
predicted label p′t, onset label bt, counter ct, framewise note index l(t).

B. Acoustic Model

The acoustic model takes mel-spectrograms X as input and
outputs the predicted probabilities apitch

t = [apitchtp̃ ]128p̃=0 for
pitch and aonset

t = [aonsettb ]1b=0 for onset label at each frame t:

apitchtp̃ = P (p̃t = p̃|X), aonsettb = P (bt = b|X). (1)

Here, the frame-wise pitch p̃t ∈ {0, . . . , 128} represents either
a normal pitch p̃t < 128 or a rest p̃t = 128 (see Fig. 1). The
onset label is defined as bt = 1 if frame t contains a note
onset and bt = 0 otherwise. The dimension of the final output
ht = apitch

t ⊕aonset
t is H = 129+ 2. For the acoustic model,

we use a convolutional RNN (CRNN) [20], which combines a
convolutional neural network (CNN) with a bidirectional RNN
containing LSTM units. The model is trained using the cross-
entropy (CE) loss.

C. Music Language Model

As for the LM, we employ an autoregressive generative
model for the sequence of pitches p1:L:

P (p1:L) =

L∏
l=1

Plang(pl|p1:(l−1)). (2)

Rests are not considered here because they are not relevant
to the desired effect of the LM during transcription. The LM
operates at the note level; at each step l, it takes pl−1 as input
and outputs the predicted probability alang

l = [alanglp ]127p=0 for
the next symbol pl:

alanglp = Plang(pl = p|p1:(l−1)). (3)

The dimension of the output gt = alang
l(t−1)+1 is 128, where l(t)

represents the index of the note sequence at time t.
To efficiently train the LM from musical score data in vari-

ous pitch ranges and keys, we consider a model symmetric with
respect to pitch transposition. First, the pitch pl is separated
into a local tonic sl ∈ {0, . . . , 11} (corresponding to pitch class
C in C major and A minor) and a relative pitch p♮l = pl − sl.
The relative pitch sequence p♮1:L is then represented as a
sequence q1:L of extended pitch classes, which are invariant
to octave transposition and retains a faithful representation
of pitch intervals within 17 semitones downward and 18
semitones upward. The extended pitch class ql ∈ {0, . . . , 35}
is defined as

q1 = p♮1%12, ql = [(p♮l−1%12) + Clip18−17(p
♮
l − p♮l−1)]%36,
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where Clipba(x) is a function that confines x within the range
{a, . . . , b} using a minimal number of octave shifts. The
original pitch sequence p1:L can be recovered from q1:L using
the following inverse transformation:

pl = pl−1 − sl−1 + sl + (ql − ql−1%12 + 17)%36− 17. (4)

We construct a generative model for the extended pitch classes
P epc
lang(ql = q|q1:(l−1)), and then the pitch-based LM symmetric

with respect to pitch transposition can be obtained by

Plang(pl|p1:(l−1), sl) ∝

{
P pc
uni(ql), l = 1;

P epc
lang(ql = q|q1:(l−1)), l ≥ 2,

(5)

where P pc
uni(ql) is the unigram probability of pitch classes. As

concrete models, we construct two LMs: a first-order Markov
model and a DNN-based model using a unidirectional LSTM
network trained with the CE loss.

To apply the LM as a prior model of pitches in transcription,
we need to estimate the tonic sl from the audio input. The
method for this will be described in Sec. III-D.

D. Tonic Recognition

For tonic recognition, we input 100 ms frame-level mel-
spectrograms to a DNN that estimates the tonic st ∈
{0, . . . , 11} at each frame t. We train this DNN to output the
predicted probability of tonic st, given by atonic

t = [atonicts ]11s=0:

atonicts = P (st = s|X). (6)

The estimated tonic ŝt is obtained by

ŝt = argmax
s

(atonicts ). (7)

For tonic recognition, we use a CRNN with an architecture
similar to that of the acoustic model (Sec. III-B). During
transcription, the estimated tonic ŝt is used to update the
predicted probability gt from the LM.

E. Integration Method 1: Generative Modeling

In the generative modeling approach, we construct a proba-
bilistic model for the note sequence (tonl , toffl , pl)

L
l=1 and acous-

tic features X = [xt]
T
t=1. To formulate the model, we convert

the note sequence to its equivalent frame-level representation
(p̃1:T , c1:T ),where p̃t ∈ {0, . . . , 128} denotes the (frame-level)
pitch (128 denotes a rest) and ct ∈ {1, · · · , C} denotes the
counter of note duration (Fig. 1). C is the maximum note
duration. We assume the following factorization:

P (p̃1:T , c1:T ,x1:T ) =

T∏
t=1

P (p̃t, ct|p̃1:(t−1), ct−1)P (xt|p̃t, ct).

(8)

This formulation resembles that of hidden semi-Markov model,
where the first factor in the product represents the probability
of hidden variables and the second the output probability.

The first factor in the right-hand side (RHS) of Eq. (8)
can be transformed to the following form by introducing the

onset variable b̃t ∈ {0, 1}, which indicates the presence (1) or
absence (0) of a note (here, including rest) onset as follows:

P (p̃t, ct|p̃1:(t−1), ct−1)

=
∑

b̃t∈{0,1}

P (p̃t, ct|b̃t, p̃1:(t−1), ct−1)P (b̃t|p̃1:(t−1), ct−1).

The second factor in the RHS is related to the note duration
probability, or equivalently, to the note exit probability πexit(c)
after a continuation of c frames. Assuming that this factor is
independent of the pitch, we have:

P (b̃t|p̃1:(t−1), ct−1) =

{
1− πexit(ct−1), b̃t = 0;

πexit(ct−1), b̃t = 1.
(9)

As a concrete form of the exit probability, we use an inverse
gamma distribution

πexit(c) ∝ IG(c;α, β) =
βα

Γ(α)

e−β/c

cα+1
, (10)

which is empirically known to approximate the data distribu-
tion by fitting the shape and scale parameters, α and β.

If note continues (b̃t = 0), then ct = ct−1+1 and p̃t = p̃t−1:

P (p̃t, ct|b̃t = 0, p̃1:(t−1), ct−1) = δp̃t,p̃t−1
δct,ct−1+1. (11)

If note transits (b̃t = 1), ct = 1 and p̃t is generated according
to the LM P̃lang(p̃t|p̃1:(t−1)) extended to include rests:

P (p̃t, ct|b̃t = 1, p̃1:(t−1), ct−1) = δct,1P̃lang(p̃t|p̃1:(t−1)).
(12)

Here, the extended LM is constructed from the LM
Plang(pl|p1:(l−1)) for normal pitches in Eq. (2) as

P̃lang(p̃t|p̃1:(t−1))

=


p
(1)
rest, p̃t = 128, p̃t−1 ̸= 128;

p
(2)
rest, p̃t = 128, p̃t−1 = 128;

[1− p
(1)
rest]Plang(p̃t|p1:l(t−1)), p̃t ̸= 128, p̃t−1 ̸= 128;

[1− p
(2)
rest]Plang(p̃t|p1:l(t−1)), p̃t ̸= 128, p̃t−1 = 128,

(13)

where p
(1)
rest and p

(2)
rest represents the transition probability to a

rest after a normal pitch and after a rest, respectively. With a
Markov LM, this model for P (b̃t|p̃1:(t−1), ct−1) reduces to a
semi-Markov model.

The output probability P (xt|p̃t, ct) can be transformed to

P (ct|p̃t,xt)P (p̃t|xt)P (xt)

P (p̃t, ct)
∝ P (ct|p̃t,xt)P (p̃t|xt), (14)

where we have factored out P (xt) irrelevant for our statistical
inference problem and assumed that P (p̃t, ct) is a uniform
distribution. We can use the outputs of the acoustic model for
the calculation of each factor in the RHS. P (p̃t = p̃|xt) can
be substituted by the predicted probability of pitch apitcht,p̃ . If
p̃t = 128 (rest), the acoustic feature xt corresponds to silence
and there is no onset for any ct. Thus, we set

P (ct|p̃t = 128,xt) = aonsett,0 . (15)
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Fig. 2. Formulation of transducer-based method.

If p̃t is a normal pitch, there is an onset only when ct = 1.
Thus, we use the predicted probability for onset as follows:

P (ct|p̃t,xt) =

{
aonsett,1 , ct = 1;

aonsett,0 , ct ≥ 2.
(16)

This completes the formulation of the generative modeling for
P (p̃1:T , c1:T ,x1:T ).

The inference of the note sequence (ˆ̃p1:T , ĉ1:T ) given the
inputs x1:T can be expressed by

ˆ̃p1:T , ĉ1:T = argmax
p1:T ,c1:T

P (p̃1:T , c1:T |x1:T ) (17)

= argmax
p1:T ,c1:T

P (p̃1:T , c1:T ,x1:T ). (18)

This can be computed using the Viterbi algorithm in the case
of a Markov LM. In the case of a general LM, full optimization
is computationally intractable, and beam search is applied.

Several refinements are introduced in the implementation.
First, to control the relative influence of the LM, we introduce
scaling factors wLM for the LM probability in Eq. (11) and
wout for the pitch output probability in Eq. (14). Second,
because the onset predicted probabilities by the acoustic model
are typically low even at onsets, we introduce a factor bonset
to amplify them.

F. Integration Method 2: Transducer

A transducer [14], [15] is composed of an acoustic model,
a LM, and a joint network. The joint network receives the
acoustic model’s output ht and the LM’s output gt as input,
and outputs the predicted probability ajoint

t = [ajointtp′ ]129p′=0 for
the set {0, . . . , 129} of pitches including the rest (128) and a
blank symbol (129) at each time t:

ajointtp′ = P (p′t = p′|X, p1:l(t−1)). (19)

For the training target, we use labels p′t ∈ {0, . . . , 129} (called
raw predicted labels), which include the blank to represent a
continuation of note (Fig. 1). If a rest continues, we do not
use the blank, to prevent the acoustic differences between notes
and rests from negatively impacting training. The raw predicted
sequence p′1:T can be interconverted with the frame-level pitch
and onset labels (p̃1:T , b1:T ) introduced in Sec. III-B.

During inference, the output sequence p̂′t is estimated as

p̂′t = argmax
p′

{ajointtp′ }. (20)

The music LM receives the raw predicted label p′t−1, which
can include blanks and rests, as input and outputs the predicted
probability gt for each frame. If p′t−1 is a blank or a rest,
the predicted probability continues from the previous frame
without an update. The state update of the music LM is
represented by the following equation:

gt =

{
alang
l(t−1)+1, 0 ≤ p′t ≤ 127;

gt−1, p̂′t = 128 or 129.
(21)

By utilizing blanks and rests in this manner, we determine
the presence or absence of symbol-level transitions, thereby
integrating frame-level and symbol-level information.

The CE loss function is adopted for training the joint
network, which is constructed using a unidirectional LSTM
network. Preliminary experiments revealed that training be-
came difficult when using a 10 ms frame unit with this method.
This is likely attributable to a significant increase in the
proportion of blank and rest in the target labels. Consequently,
the training and inference of the joint network are conducted
at a 100 ms unit in our main experiment. Since a 100 ms
unit for estimating onset and offset times is insufficient for
transcription resolution, a conversion is performed from the
100 ms unit output to a 10 ms unit output.

IV. EVALUATION

A. Experimental Setups

We constructed for the experiment a dataset (JBM) com-
prises 555 Japanese popular music songs, with audio and vocal
tracks annotated in MIDI format. The reasons for using this
data is its suitability for evaluation with realistic, commercial
songs and the availability of large-scale music score data (used
for training LMs) in the same musical genre. The dataset is
randomly split into 331 songs for training, 112 for validation,
and 112 for testing. For the training of the LMs, we employed
our in-house data of the vocal-part musical scores of 5103
Japanese popular songs that have no overlap with the JBM
data. To allow a reference to existing studies on singing
MIDI transcription (e.g. [5]–[7]), we also used the MIR-ST500
dataset [21] for evaluation. Mel-spectrograms are obtained
from acoustic signals resampled at 16 kHz using short-time
Fourier transform and 128 mel-filter banks.

The acoustic model and tonic recognizer are constructed
with identical CRNN architectures. The CNN portion of this
CRNN follows the architecture proposed in [20]. For the RNN
component, a 3-layer bidirectional LSTM is utilized, where the
hidden layer dimension is set to 256. The LSTM LM is built
using a 3-layer LSTM with a dimension of 256. The joint
network is composed of a 4-layer LSTM with a dimension
of 1024. During training, teacher forcing is applied with a
probability of 80%. Since labels representing rest (= 128)
and blank (= 129) appeared much more frequently than other
labels in the target data, leading to data imbalance, the loss
weights for those classes were set to 0.5. All these networks
are trained using the Adam optimizer with a learning rate
of 10−3. For the generative modeling, we used α = 3.683,
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β = 0.798, p(1)rest = 0.001, p(2)rest = 0.001, wLM = 1, wout = 1,
and bonset = 5.88, which were roughly optimized by several
trials. C was set to 300.

For evaluation, we use the COn, COnP, and COnPOff
metrics [22], [23], which respectively measure the F1-score
for (1) correct onset time, (2) correct onset time and pitch,
and (3) correct onset time, pitch, and offset time. Following
previous studies, we adopt the following criteria:

• COn: The absolute difference between the ground-truth
and estimated onset times must be less than 50ms.

• COnP: The COn criterion must be satisfied, and the pitch
must match the ground-truth.

• COnPOff: The COnP criterion must be satisfied, and
the absolute difference between the ground-truth and es-
timated offset times must be less than max{50 ms, 0.2×
(ground-truth note duration)}.

B. Experimental Results

To evaluate the performance of the two LMs, we calculated
the CE using the JBM test set. The results were 2.858
(bits/symbol) for the Markov LM and 2.454 (bits/symbol)
for the LSTM LM, clearly demonstrating the high predictive
performance of the DNN-based LM.

Fig. 3 shows the average COnP F1-scores obtained by the
generative modeling method. As the beam width increases,
the F1-score rises monotonically and approaches the value
obtained with Viterbi decoding. Under approximately optimal
parameter settings (wLM = wout = 1), there is no notable
difference between the two LMs. With an alternative setting
(wLM = 0.5, wout = 3), the LSTM LM yielded slightly better
performance. However, across all parameter configurations
examined, the F1-score obtained by the LSTM LM with beam
width 100 did not surpass that by the Markov LM using Viterbi
decoding. This indicates that the Markov LM’s advantage that
full optimization of the output sequence can be achieved via
Viterbi decoding outweighs the LSTM LM’s advantage in
providing more accurate pitch probability estimates.

Table I compares the performance of the generative model-
ing, transducer, baseline acoustic model (CRNN), a state-of-
the-art singing MIDI transcription method, which was trained
with a combination of the CTC and CE losses (denoted as
“CTC&CE”) [5]1. For the generative modeling, the Markov
LM and Viterbi decoding were used. Both the generative
modeling and transducer significantly improved the COn and
COnP F1-scores compared to the CRNN, clearly demon-
strating the effectiveness of incorporating the LMs. The two
transducers, which used different LMs, showed comparable
performance, but both were outperformed by the generative
modeling. The F1-scores by the generative modeling did not
reach the CTC&CE method. In particular, the COnPOff F-
scores for the proposed methods were substantially lower than
that of the CTC&CE method, indicating further improvements

1We retrained this model with the JBM dataset. The source code is available
at: https://github.com/york135/CECTC baseline APSIPA25

1 3 10 30 100 Viterbi
Beam width

55
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Markov
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Markov
LSTM

Fig. 3. COnP (%) for the generative modeling method with varying beam
widths on the JBM data. The solid line shows the result for wLM = wout = 1
and the dotted line for wLM = 0.5 and wout = 3.

Ground
truth

Transducer
(LSTM)

Generative 
modeling
(Markov)

CRNN

75 s 77 s 79 s 81 s 83 s

Fig. 4. Example transcription results. Note onsets are indicated by red lines
and F0 contour is displayed in each panel.

in offset time estimation are needed. Similar tendencies were
observed on the MIR-ST500 dataset.

Fig. 4 illustrates example transcription results2. In this exam-
ple, due to fluctuations in the F0 contour, the CRNN produced
numerous errors, including spurious very short notes. Many
of these errors were corrected by the generative modeling;
however, the first note in the right red box still exhibits a pitch
error caused by a large F0 deviation. This error is resolved
in the result by the transducer. Notably, this phrase consists
of a repeated note pattern, as shown in the left black box,
suggesting that the long-range memory of the transducer may
have contributed to the correct transcription.

V. CONCLUSIONS

We explored two approaches for integrating music LMs into
singing MIDI transcription: generative modeling and the trans-
ducer. We examined the Markov model and the LSTM network
as the LM. Our results demonstrated that all integration
methods significantly improve transcription accuracy over the
CRNN baseline. In particular, the generative modeling com-
bined with Viterbi decoding achieved the best performance,
benefiting from its ability to perform exact inference over the
entire output sequence. With regard to LM comparison, the
Markov and LSTM LMs showed comparable performance.
While these results indicate that the classical hidden Markov
model remains effective for the task, the transducer with the

2See also the demo page: https://ice.inf.kyushu-u.ac.jp/SMTwMLM/
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TABLE I
COMPARATIVE EVALUATION RESULTS.

Dataset Method COn (%) COnP (%) COnPOff (%)
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

JBM

CRNN 75.18 87.14 80.37 68.39 79.16 73.06 50.93 58.78 54.36
Generative modeling (Markov) 84.62 87.88 85.88 76.77 79.67 77.89 56.24 58.42 57.11
Transducer (LSTM) 85.68 84.32 84.70 77.71 76.45 76.81 55.17 54.36 54.59
Transducer (Markov) 84.34 86.00 84.87 76.33 77.79 76.80 54.57 55.60 54.91
CTC&CE loss [5] 88.53 88.93 88.44 81.28 81.60 81.18 64.45 64.68 64.37

MIR-ST500

CRNN 66.92 80.46 72.93 62.95 75.71 68.62 44.60 53.68 48.63
Generative modeling (Markov) 76.26 80.33 78.10 71.86 75.75 73.62 49.05 51.67 50.23
Transducer (LSTM) 76.56 80.13 78.19 71.82 75.21 73.36 48.46 50.64 49.46
Transducer (Markov) 77.38 79.30 78.22 72.41 74.24 73.21 49.46 50.59 49.96
CTC&CE loss [5] 80.28 79.24 79.66 75.12 74.23 74.58 58.10 57.49 57.72

LSTM LM performed better in cases where repeated note
patterns were present. Although the proposed methods did not
surpass the performance by the state-of-the-art methods [5],
[6], the transducer has potential of further improvement by
incorporating them as the acoustic model.

For future work, the transducer method can be expanded
with the joint training of the acoustic model and LM. For
the generative modeling, it is worth optimizing the balance
between the acoustic model and LM and formulating a refined
model for offset times. Since the repetitive patterns are frequent
in musical rhythms, extending the proposed method for rhythm
transcription is also worth investigating.
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