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ABSTRACT
Piano fingering is a creative and highly individualised task ac-
quired by musicians progressively in their first music education
years. Pianists must learn to choose the order of fingers to play
the piano keys because scores do not have engraved finger and
hand movements as other technique elements. Numerous research
efforts have been conducted for automatic piano fingering based on
a previous dataset composed of 150 score excerpts fully annotated
by multiple expert annotators. However, most piano sheets include
partial annotations for problematic finger and hand movements.
We introduce a novel dataset for the task, the ThumbSet dataset,
containing 2523 pieces with partial and noisy annotations of piano
fingering crowdsourced from non-expert annotators. As part of our
methodology, we propose two autoregressive neural networks with
beam search decoding for modelling automatic piano fingering as
a sequence-to-sequence learning problem, considering the correla-
tion between output finger labels. We design the first model with
the exact pitch representation of previous proposals. The second
model uses graph neural networks to more effectively represent
polyphony, whose treatment has been a common issue across pre-
vious studies. Finally, we finetune the models on the existing expert
annotations dataset. The evaluation shows that (1) we are able to
achieve high performance when training on the ThumbSet dataset
and that (2) the proposed models outperform the state-of-the-art
hidden Markov models and recurrent neural network baselines.
Code, dataset, models, and results are made available to enhance
the task reproducibility, including a new framework for evaluation.
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1 INTRODUCTION
Automatic Piano Fingering (APF) aims at modeling the finger move-
ments of humans when playing a given score on the piano. It as-
sumes automatically labeling each note in the musical score with
a finger number from either the right or the left hand: thumb (1),
index (2), middle (3), ring (4) and (5) Pinky. According to [24] piano
fingering is one of the most difficult human tasks, requiring years
of training. Because finger and hand movements are not usually
indicated on scores as clearly as other technique elements, pianists
must develop their piano fingering ability, i.e., determine the order
of their fingers to play the piano keys. To that extent, pianists must
adapt the fingering at each moment according to the subsequent
fingering patterns’ needs [23]. Fingering must support the musical
content of the work in all its facets: articulation, tempo, dynamics,
rhythm, style, and character [23]. Moreover, it has to be as comfort-
able as possible [3], considering that the pianists choose the fingers
to play the notes in the score in a highly individualised manner [15].
The mutual agreement between fingering of different professional
pianists is around 70% [19].

Piano fingering is one of the so-called psycho-motor skills and
is fundamental in music education because pianists learn to move
fingers and hands progressively throughout the first education
years [27]. Therefore, fingering is one of the fundamental dimen-
sions for assessing piano performance [12]. The main application of
APF systems is to support piano students, and other piano-related
tasks can be enhanced through understanding piano fingering, such
as difficulty analysis [20, 27], polyphonic transcription [17], rhythm
transcription [21] or score reductions [20].

APF has been studied over decades [18, 25, 34] and is still an
actively studied topic [8, 19, 35], in the music information retrieval
field. According to Nakamura et al. [19] the limitations of APF
methods are related to: (a) temporal features and high-level con-
texts; (b) interdependence of the two hands; (c) individuality and
model adaptation; and (d) cost vs. statistical viewpoints. Thanks
to the recent release of a dataset [19], the APF task has seen more
contributions [8, 35]. Although the previous state of the art has still
held with the Hidden Markov Models (HMM) presented by Naka-
mura et al. [19]. They also presented two simple neural network
models. However, the models performed worse than the HMMs,
suggesting a limitation of applying deep learning methodology to
this task with the available dataset. In the present research, we
want to design more complex, and data-intensive models able to
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(a) encode polyphony with graph neural networks and (b) learn
high-level contexts with an autoregressive sequence-to-sequence
(seq2seq) model.

Previous APF research [19] addresses the need for additional
training data when training machine learning models which gener-
alise better, given that the optimal fingerings differ across pianists.
In particular, most music scores include partial annotations solely
regarding the problematic finger and hand movements. The editor
or the composer adds partial annotations in published scores, or the
music teachers or students add them afterwards. However, there is
no public dataset of partially annotated fingerings for research on
APF modelling. Therefore, we collect public domain scores from
MuseScore to build an open dataset, ThumbSet. ThumbSet allows
training complex deep learning fingering models on a larger par-
tially annotated dataset.

As a first contribution, we release ThumbSet, a dataset of 2523
pieces with partially annotated finger labels. As a second contribu-
tion, we empirically demonstrate that it is possible to train more
extensive and complex deep learning architectures on the proposed
noisy dataset with similar performance to training on fully anno-
tated data. In addition, we propose two autoregressive models: a
long short-term memory network (LSTM) and a graph neural net-
work (GNN). While the LSTM takes the pitches as input, the GNN
encodes the polyphonic relationships between notes, with the pitch
as nodes and the relationships as edges, employing graph neural
networks. The proposed models outperform the state-of-the-art
hidden Markov model and previous neural networks methods. In
our experiments, we propose a novel evaluation metric and use
it to show that the autoregressive models improve the sequential
coherence of fingerings. Finally, another challenge is to improve
the open science on the APF task. For open science purpose, we re-
lease the ThumbSet dataset 1, code, models, results 2 and evaluation
framework 3 as open source.

The remainder of this paper is organised as follows. In Section 2,
we review the relatedwork.We describe the novel ThumbSet dataset
in Section 3. The proposed approach is given in Section 4. Section 5
summarises our experimental work and the paper is concluded in
Section 6.

2 RELATIONWITH PREVIOUS WORK
Several techniques have been proposed for modelling piano fin-
gering. While expert systems [7, 25] were used for APF in the
1900s, later local search algorithms grounded in cost functions
were developed [2], and more recently data-driven methods were
used [18, 19, 34].

With regards to data-driven methods, we highlight the HMM
models and deep learning methods proposed by Nakamura et al. [18,
19]. Although there is evidence that within a 6-note context, pi-
anists may decide to finger note-by-note, they usually consider
all past decisions. The neural network methods lack information
about the final output of the previous sequence elements, while
HMMs use Viterbi decoding to force the sequential coherence. In

1ThumbSet dataset available at: https://doi.org/10.5281/zenodo.6433702
2Code, models, and results available at:
https://github.com/PRamoneda/Automatic-Piano-Fingering
3Evaluation framework available at: https://github.com/PRamoneda/APF_eval

other words, the neural network methods estimate the finger prob-
ability for each note, while the proposed HMM understand the
fingering process as a sequence, taking into account all other de-
cisions. We want to fill this gap by using autoregressive neural
networks in the present study. They introduced the PIG (PIano fin-
gernG) Dataset [19] compiling 150 piano compositions by Western
classical music composers and providing annotated fingerings by
professional pianists. The dataset comprises the miscellaneous set
containing 120 pieces, each with fingerings provided by one or two
pianists, and the composer-specific set containing pieces by Bach,
Mozart, and Chopin (10 pieces for each) with fingerings provided
by 4, 5, and 6 pianists, respectively. The former set was used as
training data and the latter as test data in the original study [19].
Most pieces in the PIG Dataset are excerpts of musical compositions.
A typical length is one page, with roughly 20 bars and 300 notes.
However, the dataset does not provide a validation set, and it only
brings a train and test split because the first proposed models [18]
do not need to tune hyperparameters. Furthermore, more recent
research projects [8, 35] still do not provide a clear validation split.
For these reasons, we propose an official validation split to be used,
allowing the reproducibility and fairness of future research. The
new validation set is separated from the training set, with the 30
pieces fingered by the annotator NE. We removed 20 pieces anno-
tated by the same annotator from the test set to reduce possible
biases between validation and test sets.

The evaluation metrics proposed by Nakamura et al. [19] quan-
tify the accuracy and individuality of piano fingering: the general
match rate (𝑀𝑔𝑒𝑛) indicates how closely the estimation agrees with
all the ground truths; the highest match rate (𝑀ℎ𝑖𝑔ℎ) focuses on the
ground truth closest to the estimation for each piece; the soft match
rate (𝑀𝑠𝑜 𝑓 𝑡 ) judges whether each estimated finger label matches
at least one of the ground truths; and the recombined match rate
(𝑀𝑟𝑒𝑐 ) considers the recombined ground truth that minimises the
error of the estimation. Here we propose an additional metric to
quantify the amount of hand movement on the piano, which trans-
lates into the increased effort from the pianists.

Recently, Guan et al. [8] proposed to use a bidirectional LSTM
instead of a unidirectional one. However, they are still modelling
the system as a local classification problem, i.e., for a sequence of
notes, they only predict the note at the middle of the sequence,
as the neural network methods proposed by Nakamura et al. [19].
The Guan et al. research is interesting since they dealt with the
difficulty of fingering chords and presented a methodology and
metrics that highlight the problem of fingering for polyphonic pi-
ano music. However, the performance is below par with Nakamura
et al. proposal. In the same line, Zhao et al. [35] proposed a new
input representation based on reducing the keyboard to pitch dif-
ferentials as Nakamura et al. did in the HMM approaches, with
additional constraints for the last neural network layer. Although
very inspirational, the research paper has not been published yet,
and we do not have access to the code.

In addition to the proposed dataset, methods, and metric, we aim
at proposing a open evaluation framework towards standardizing
the assessment and establishing good evaluation practices for the
APF task. We believe that research reproducibility may improve
future APF research.
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Figure 1: Data augmentation pipeline.

3 THUMBSET DATASET
Here we introduce ThumbSet dataset, an open dataset resulting
from collecting all the musicXML piano scores published as public
domain on the MuseScore website 4 with finger label annotations.
We relied on music publishers adding partial or full annotations
to support piano learning when creating this dataset. Note that
the annotations solely reflect a single editor’s expertise and do not
represent global ground truth. The source of the annotations on the
MuseScore website is not clear. While for some scores, the labels
are not correctly engraved, for other scores, the fingers may be
provided by non-expert users. Therefore, the dataset may contain
a considerable amount of noise data, and the data quality is worse
than the PIG dataset.

ThumbSet is composed of 2523 music scores as is shown in Ta-
ble 1. The genres, transcription quality and fingering quality is
highly heterogeneous, and the level of difficulty of the pieces might
tend to the early years of music education as contrasted to the PIG
dataset. However, it is not possible to quantify all these claims with
the existing metadata. We can claim there are more finger labels
annotated in the right hand (61%) than in the left hand (39%), while
there are more pieces with only left annotations (742) than with
only right annotations (153). The proportion of annotated fingers
and the window’s lengths are similar in both hands. Moreover, to
make ThumbSet available for research purposes [6], we sliced the
data in several windows. Each window takes the context, other
notes, and symbols, between 32 and 64 notes and symbols around
each symbol of interest, including other finger label annotations.
In addition, the excerpts are encoded in the PIG encoding, a text
format proposed in [18] that does not allow reverting to the original
score in order to protect the copyright of the pieces. We distribute
ThumbSet as variable-length music windows in the PIG encoding.
The format contains information about pitch, time onset, time off-
set, and the finger label annotation if it exists for all notes. We
limit access to the data upon request under the Zenodo platform. In
addition, we distribute the links to all the MuseScore source pieces
we have used in creating ThumbSet.

4 METHODOLOGY
We propose two autoregressive neural network methods, autore-
gressive long short-term memory method ArLSTM and autoregres-
sive graph neural network method ArGNN, to learn general features

4www.musescore.com

ThumbSet Statistics
LH RH total

n pieces 2370 1781 2523
n windows 70613 108124 178737
ave length of window 43 44 44
prop of annotated notes 52% 52% 52%
Table 1: Statistics about ThumbSet dataset.

from ThumbSet and perform fine-tuning on the PIG dataset. In addi-
tion, we structure the models as a sequence-to-sequence model with
one-to-one mapping, using an encoder and decoder architecture.
The ArLSTM encoder uses as input solely a pitch vector, while the
ArGNN encoder can handle voices and chords simultaneously with
graph neural networks. Moreover, considering previous sequence
outputs, the autoregressive decoder works in a high-level context.

4.1 Data representation
Piano fingering annotations may come in two different formats,
depending on the annotation process. The first format is a set of
finger numbers annotated manually on sheet music to suggest a
fingering (or fingerings) for a composition. The second format is a
list of finger numbers employed by amusician during a performance
and are directly derived from the performance. The latter form of
fingering data is found in the PIG and ThumbSet. Given a sequence
of𝑇 notes presented in a piece, the fingering of the piece outcomes
by assigning a finger label 𝑦𝑡 for the 𝑡-th note. The finger label
ranges from 1 to 5, in the right hand and from -1 to -5 in the left
hand. We represent the 𝑦𝑡 without finger annotation available as
0. The MIDI pitch of each note can be represented by 𝑥𝑡 , where 𝑡
denotes the note index in the piece.

4.2 Data Augmentation
Augmenting training data is a common strategy for increasing
the generalisation of DNN-based methods [31]. In this work, we
adapt the APF data augmentation from the procedures proposed by
Nakamura et al. [19] since that paper did not present data augmen-
tation procedures concerning symmetries of fingering. Nakamura
et al. [19] employed physical symmetries for reducing the transi-
tion states of the HMM proposed models, and we derive similar
procedures to perform data augmentation, depicted in Figure 1.
Hand inversion assumes transforming any sequence of notes be-
tween the two hands with inverted physical distances given an
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infinite keyboard. Consequently, the hand’s disposition of fingers
is also inverted. To compute the inverted physical distances, we get
the number of semitones between each sequence of notes, the direc-
tion (ascendent or descendent), and each note’s key type (black or
white). The inverted sequence has the same number of intervals and
physical types but in the opposite direction. Note that to keep the
same distribution of physical distances and key types, we compute
a grid search, which also guarantees that the new sequence does
not surpass the range of the piano keyboard. However, although
the hand inversion keeps the exact physical distances between keys
and fingers, it does not keep the same melody and harmony rela-
tionships, producing other musical content. Note that solely eight
sequences of ThumbSet do not have any possible augmentations,
while every piece of PIG has possible augmentations.
Time inversion assumes that the fingering of a sequence of notes
is the same when one plays the sequence from the end to the
beginning and the opposite. Note that the time inversion property of
piano fingering was studied hundred years ago [3]. To compute time
inversion, we reverse the sequence of fingers and notes. Therefore,
this augmentation can be applied to any piano sequence of notes
and fingers.
Octave transposition is based on the fact that a sequence of fin-
gers and notes can be transposed to any piano octave keeping
the same fingers without a change in harmony or pitch class. The
transposition method is to sum or subtract multiples of 12 to the
original sequence of pitches without surpassing the range of the
piano keyboard. The keyboard size also limits the number of possi-
ble augmentations. The number of feasible augmentations depends
on the pitch range of the sequence, allowing a maximum of 7 aug-
mentations.

4.3 Encoder. Bi-LSTM vs Graph Neural
Networks

We propose two methods, ArLSTM and ArGNN, the former-latter
with pitch sequences as input and the latter with a graph of pitches
as nodes and the edges distinguishing between chords and single
notes. The encoder is the main difference between both methods,
as is explained in the following paragraphs. The ArGNN encoder
is depicted in Figure 3, and it follows a similar architecture to
ArLSTM depicted in Figure 2. The sole difference is that ArGNN
replaces the bi-LSTM encoder with a graph neural network encoder.
Note that the previous methods considered on this study, HMM1,
HMM2, HMM3, FF-base and LSTM-base, as well as the proposed
ArLSTM method, have only the sequence of pitches as input and
the finger labels as output. Moreover, the proposed ArGNN method
also considers the onset time of each note to create the edges of the
graph.
Autoregressive long-short-term-memoryneural network.The
autoregressive LSTM is given as input the pitch sequence. Naka-
mura et al. [19] showed that a high performance can be achieved by
using only pitch information. For a fair comparison to [19], we use a
similar architecture to theirs. We further adjusted ArLSTM encoder
adding a bidirectional layer. The directional layer was suggested
in Nakamura et al. [19] and Guan et al. [8] for a better feature
representation.

Figure 2: ArLSTM encoder-decoder architecture diagram.

Autoregressive graph neural network. The challenge of find-
ing a fingering for polyphonic passages has been addressed in
musicology studies [23], and unsuccessfully in the existing APF
literature [8, 19]. With the goal of a method to handle polyphonic
passages, the encoder is substituted with a graph gated recurrent
neural network (GGNN). We employ directional multi-edge-type
GGNN [16], to learn note-level hidden representations from an
input music score. We use GGNN [16] because of its advantage in
learning node-level representations in a graph. The graph layer
succeeds in understanding the complex music representation of
polyphonic piano scores in previous research [10]. Moreover, it has
similar parameters with the ArLSTM encoder by adding polyphonic
edges information.

Regarding the ArGNN input, the score may be represented as a
graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 denote nodes and edges, respec-
tively. A node 𝑣 corresponds to a single note in the score. An edge 𝑒
corresponds to a connection between two musically neighbouring
notes encoding the polyphonic relationship between two notes of
a score. We draw our architectural inspiration from the GGNN re-
lated layers. In addition, we employed the simplified representation
of Jeong et al. [10], to encode piano scores as graphs. We want to
discriminate between chords and single notes, where the nodes
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are also the pitch, and the edges mark the polyphonic relation-
ship of the notes. The polyphonic relationship between the notes
is marked with two edge types: (onset) encoding notes sounding
simultaneous and (next) defining two sequential notes in time. The
encoder-decoder ArGNN diagram is shown in Figure 3.

Figure 3: ArGNN encoder diagram.

4.4 Decoder. Autoregressive and beam search
decoding

One of the important characteristics of piano fingering is that it is
necessary to be considered as a progression sequence rather than
as a simple piece of note-by-note information because the difficulty
of performing a given fingering is decided by considering when to
move the hand position or make fingers crossing.

To handle this problem, we propose to adapt autoregressive (AR)
decoding, which has been widely used for sequence generation of
waveform samples [33] or natural language [1]. AR decoder takes
its prediction of the previous time step as an input for predicting
the current time step. It has been extensively used in previous re-
search on music-related tasks, such as music transcription [14],
performance modelling [11], or music generation [9]. Instead of

modelling the probability distribution of 𝑦𝑡 as a conditional prob-
ability for a given input sequences like 𝑃 (𝑦𝑡 |𝑥0, . . . , 𝑥𝑇 ), an AR
neural network models it as a conditional probability for a given
input sequences and a given previous output fingering sequences,
like 𝑃 (𝑦𝑡 |𝑥0, . . . , 𝑥𝑇 , 𝑦0, . . . , 𝑦𝑡−1). In our model, 𝑦𝑡 corresponds to
the fingering of 𝑡-th note while 𝑥𝑡 corresponds to the pitch of 𝑡-
th note. The main difference between AR and non-AR is that AR
models predict a given time step while all prior steps’ outcomes
have already been determined. Therefore, Ar helps the model gen-
erate coherent prediction sequence, which is crucial for fingering
estimation.

During the training procedure, we have applied teacher-forcing
training, which feeds the ground-truth𝑦𝑡−1 instead of the predicted
result 𝑦𝑡−1 to predict 𝑦𝑡 . The model uses its prediction of previous
steps during the inference.

To estimate the most probable fingering sequence for given notes,
we employed beam search instead of greedy search. Beam search
tracks 𝑘 candidates of most probable output sequences during the
sequence generation. Rather than greedily choosing the most prob-
able next step while building the sequence, beam search extends
all possible next steps and retains the most probable 𝑘 candidates,
where 𝑘 is a user-defined parameter. The probability of a decoded
sequence can be represented as

∏𝑁
𝑡−1 𝑝 (𝑦𝑡 |𝑥0, . . . , 𝑥𝑇 , 𝑦0, . . . , 𝑦𝑡−1).

The music cognition and perception literature [28] suggest 𝑘 = 6
because a good pianist can retain in memory 5 future notes for
correct piano fingering.

Beam search is useful for finding a sequence with a low proba-
bility choice in the beginning but eventually composes a sequence
with higher accumulated probability in the end. Choosing a less
desirable option to achieve a better result later on is also a common
tactic adopted by pianists when deciding their fingerings, as one
unfavorable move on the preceding note might make succeeding
notes much easier to play.

4.5 Fine-tuning and Soft Labels
The labels corresponding to the fingers in the ThumbSet dataset
(Section 3) are partially annotated. In addition, the source of the
annotation is not clear. It may be copied from expired copyright edi-
tions or annotated by the user who engraved the score. We observed
several errors by exploring the quality of the annotations, although
it is difficult to quantify the dataset noisiness. Given this scenario,
we assess whether a model trained on ThumbSet is generalising
by evaluating it in the PIG dataset domain with multi-annotated
expert fragments. For this purpose, we perform domain adaptation
to the PIG dataset by fine-tuning the autoregressive models from
the ThumbSet to the PIG training set. By fine-tuning the model
into the PIG domain, we can guarantee fair evaluation on expert
annotations, measure how the model handles multi-annotation, and
compare it with previously proposed models.

On the one hand, catastrophic forgetting [13] may degrade all
the knowledge acquired in the ThumbSet domain. For the sake of
simplicity, we decided to explore the freezing of the encoder to
retain the knowledge of the first domain in the second. On the
other hand, training on data labelled by non-experts may degrade
performance because DNNs easily overfit to noisy labels [29]. Max-
imizing the log-likelihood of the (possibly) correct label encourages

6506



MM ’22, October 10–14, 2022, Lisboa, Portugal Pedro Ramoneda et al.

Hand right left both
Metric 𝑀𝑔𝑒𝑛 𝑀ℎ𝑖𝑔ℎ 𝑀𝑠𝑜 𝑓 𝑡 𝑀𝑟𝑒𝑐 𝑀𝑐𝑝 𝑀𝑔𝑒𝑛 𝑀ℎ𝑖𝑔ℎ 𝑀𝑠𝑜 𝑓 𝑡 𝑀𝑟𝑒𝑐 𝑀𝑐𝑝 𝑀𝑔𝑒𝑛 𝑀ℎ𝑖𝑔ℎ 𝑀𝑠𝑜 𝑓 𝑡 𝑀𝑟𝑒𝑐 𝑀𝑐𝑝 inference
HMM1 58.34 65.08 81.1 72.04 1.09 65.08 70.17 81.1 74.12 1.12 61.77 67.66 81.09 73.15 1.12 0.30 ms
HMM2 60.65 66.72 83.92 75.17 0.98 66.3 71.88 82.98 76.61 1.05 63.78 69.49 83.59 76.12 1.02 0.49 ms
HMM3 60.54 66.86 83.38 74.42 1.05 66.24 71.7 82.41 75.91 1.05 63.63 69.4 83.05 75.42 1.06 0.66 ms
FF-base 56.89 61.77 79.98 66.57 1.17 66.38 71.41 83.33 73.59 1.21 61.44 66.31 81.34 69.82 1.19 73.57 ms
LSTM-base 58.45 63.07 81.58 67.49 1.07 67.51 72.17 84.56 75.26 1.11 62.71 67.34 82.69 71.09 1.07 385.06 ms
ArLSTMThumb-f 60.41 66.91 84.07 74.75 0.96 70.69 77.3 87.57 81.36 0.99 65.34 71.73 85.49 77.8 0.99 215.78 ms
ArGNNThumb-s 62.77 68.87 86.15 76.6 1.01 70.92 76.32 87.58 80.37 1.01 66.84 72.62 86.83 78.55 1.01 161.71 ms
Human 70.2 78.9 91.0 84.5 1 73.1 79.3 90.5 84 1 71.4 79.1 90.8 84.3 1

Table 2: Results comparison

the model to be confident in its predictions, which might be danger-
ous in the presence of noisy labels in the training data. Therefore,
we propose to experiment with a simple technique, soft labels, for
training in the noisy domain [32]. We smooth the label distribution
by substituting float soft objectives for the 1 and 0 hard original
classification targets, as explained by Szegedy et al. [30]. In addi-
tion, previous research has highlighted that noisy labels are helpful
in very subjective and multi-label tasks, where many options are
feasible [5]. Therefore, the smooth percentage is selected with the
prior knowledge of the data with the value of 30%, because the
typical agreement between piano fingering annotators is 70% in
PIG data, assuming the maximum confidence would be that.

5 EXPERIMENTS
Because we aim at leveraging the large size of the ThumbSet dataset,
we pre-train all methods on this dataset and then we fine-tune the
resulting machine learning models on the PIG dataset. Note that
baselines from Nakamura et al. [19], HMM-1, HMM-2 and HMM-3,
LSTM-base, and FF-base, were not designed to work with incomplete
annotations. Pre-training them did not improve their performance
and we did not include these results. In contrast, the proposed auto-
regressive methods, ArLSTM and ArGNN, benefit from ThumbSet
pre-training and then are fine-tuned on the PIG dataset. We denote
the corresponding models as ArLSTMThumb and ArGNNThumb.
Moreover, in the case of ArGNN, the soft labels improved accuracy
on the validation set, while for ArLSTM, soft labels led to a decrease
in performance. Thus, we report the best performing models on
the validation set, ArLSTMThumb-f and ArGNNThumb-s, where
Thumb denotes fine-tuning on the ThumbSet, s the use of soft labels
and f freezing the encoder on the fine-tuning.

We evaluate the APF systems using the expert labels provided
by the PIG test dataset. The multi-annotated ground truth allows
us to compare the proposed method with the previous work and
consider piano individualisation. Due to the quality of annotations,
we reserve the novel ThumbSet dataset for training. Additionally,
we present metrics for left hand (LH) and right hand (RH) separately.
We further compare the impact of the autoregressive decoder, beam
decoding, data augmentation, soft labels, training dataset and fine-
tuning in an ablation study in Section 5.3. Lastly, we analyse two
selected examples from a musicology perspective in Section 5.4.

5.1 Experimental Setup
For training the proposed methods, we used the Adam optimizer
and a batch size of 64 and a learning rate of 5 ·10−5. We designed the
encoders and decoders of LSTM and GGNN with 32 units and an
encoder of three layers, the same parameters used by Nakamura et
al. [19] for the LSTM-base. We used the negative log likelihood loss
as the criterion for the optimizer while masking the outputs without
labels in the case of the ThumbSet dataset. The hyperparameters
of the HMMs were trained by grid search on the proposed PIG
validation set.

We rely on the four metrics,𝑀𝑔𝑒𝑛 ,𝑀ℎ𝑖𝑔ℎ ,𝑀𝑠𝑜 𝑓 𝑡 , and𝑀𝑟𝑒𝑐 , pro-
posed by Nakamura et al. [19] and reviewed in Section 2, consid-
ering the multi-annotated PIG dataset. Note that we use a Python
wrapper on the original C++ implementation of the evaluation met-
rics and due to the floating precision the results are slightly different
to original evaluation metrics. In addition, we introduce another
metric to account for the sequential characteristics of fingering, the
change position rate (𝑀𝑐𝑝 ). There are two position change types
in piano fingering: finger-crossing, which use the thumb finger to
cross fingers and change the hand position, and shift movement,
changing the hand position without crossing the fingers. After
counting the number of occurrences of these position changes of
the fingerings, 𝑀𝑐𝑝 results from normalising it with the average
number of position changes on the expert annotations. 𝑀𝑐𝑝 does
not need human annotation to compare the result of the models. It
uses information from expert fingerings, but just for normalising
the value. Moreover, hand change position is an established term
in the piano community [4, 15, 22]. It gives importance not only to
the fingers but also to the hand. Pianists change the hand’s posi-
tion while playing the instrument depending on the composition
requirements. However, pianists tend to minimise the effort needed
to play a sequence of notes. Consequently, the fewer hands change
position, the less effort is required.

5.2 Results
In Table 2, we display the metrics for the five previous methods
and the two proposed methods. The proposed autoregressive mod-
els achieve the best performance on every metric evaluated. The
results of the previous methods are in a different order from the
original ones [19] with HMM2 as the best baseline instead of the
HMM3. The difference seems to indicate the importance of decou-
pling the train and test with the validation set [26]. Moreover, the
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change position ratio is slightly better on the HMM2. The relative
difference on 𝑀𝑔𝑒𝑛 with the best baseline, HMM2, is 3.06% in the
case of ArGNNThumb-s and only 5% of the human agreement. In
addition, in the case ArLSTMThumb-f, with the same representation
as compared previous methods, the difference is 1, 74%.

The main takeaway from these experiments is that ThumbSet
noisy dataset allows the training of more complex deep learning
models that outperform previous methods. The state-of-the-art
performance, not only on the data based metrics, 𝑀𝑔𝑒𝑛 , 𝑀ℎ𝑖𝑔ℎ ,
𝑀𝑠𝑜 𝑓 𝑡 , and 𝑀𝑟𝑒𝑐 , also in the 𝑀𝑐𝑝 , indicates that the proposed au-
toregressive methods learn representations related to the effort
reduction of hand movement. Apart from the mentioned results of
ArGNNThumb-s and ArLSTMThumb-f on the evaluation metrics
𝑀𝑔𝑒𝑛 and𝑀𝑐𝑝 , the proposed methods outperform in the other met-
rics. The results of𝑀ℎ𝑖𝑔ℎ for both hands have a similar increment,
3, 14% than the 𝑀𝑔𝑒𝑛 comparing the ArGNNThumb-s experiment
with the ArLSTMThumb-f experiment. The LSTM-base and FF-base
experiments level-off on the 𝑀𝑟𝑒𝑐 and increase on the 𝑀𝑐𝑝 , indi-
cating a worse understanding of sequential coherence. Although
the proposed methods outperform in all evaluation metrics the
previous methods, the comparison between both is also important.
ArGNNThumb-s outperform ArLSTMThumb-f in all the metrics,
and the increment of performance is similar for all the evaluation
metrics, which might indicate the difference is only gotten by the
polyphonic information provided.

We observed that the previous methods, FF-base and LSTM-base,
without an autoregressive decoder, achieve sub-par performance
when pre-trained on the partially annotated data of the ThumbSet
dataset. Introducing an autoregressive encoder leads to better re-
sults. This suggests that the proposedmethods,ArLSTM andArGNN,
are able to leverage more extensive training data. The results are
promising since annotating datasets such as PIG is expensive, and
large score repositories come with incomplete and noisy annota-
tions. However, in terms of computational cost, the inference time
is significantly smaller forHMMs. We note thatArLSTM andArGNN
have similar inference time to the two deep learning baselines, FF-
base and LSTM-base. The hardware used to carry out the inference
experiment is a machine with 32GB ram and i7-7700 CPU.

We further observe a gap between the models tested on the left
hand and right hand, not mentioned in previous research, even
though there is a little gap between the left hand and right-hand
human agreement. The gap could indicate a difference between
the left-hand and the right-hand domains. Further experiments are
needed to understand if the difference is linked to the data. We
can also see visualising each hand performance separately that the
increment of performance of the proposed methods compared with
the HMMs are mainly based on a better understanding of the left
hand, where there is a greater improvement. The greater improve-
ment in the understanding of the left hand than the right hand can
be observed in all the evaluation metrics. For example, comparing
the 𝑀𝑔𝑒𝑛 in the ArGNNThumb-s and HMM2, we can see the first
has a difference of 8.17% between the right and left hand while the
latter only 5.8%. We can not affirm if the gap between the left and
right hand is produced because of the increment of the domain with
ThumbSet or the autoregressive architecture, and further research
could answer this question. The drop-off of improvement in the

𝑀𝑔𝑒𝑛 Δ𝑀𝑔𝑒𝑛 𝑀𝑐𝑝 Δ𝑀𝑐𝑝

Models proposed
ArGNNThumb-s 66.84 0.00 1.01 0.00
ArLSTMThumb-f 65.34 0.00 0.99 0.00
Without Ar decoder
FcThumbGNN-s 63.55 -3.29 1.20 0.17
FcThumbLSTM-f 27.39 -37.95 3.22 2.23
Without beam decoding
ArGNNThumb-s 64.7 -2.14 1.05 0.04
ArLSTMThumb-f 64.25 -1.09 0.98 -0.01
Without data augmentation
ArGNNThumb-s 60.36 -6.48 1,06 0.05
ArLSTMThumb-f 64.69 -0.65 1,01 -0.02
Soft labels ablation
ArGNNThumb 66.48 -0.36 1,03 0.02
ArLSTMThumb-sf 65.32 -0.02 0.98 -0.01
Freeze encoder ablation
ArGNNThumb-sf 65.99 -0.85 1.06 0.05
ArLSTMThumb 64.01 -1.33 0.95 -0.04
Only PIG training
ArGNN 60.53 -6.31 1.14 0.13
ArLSTM 26.82 -38.52 2.27 1.28
Only ThumbSet training
ArGNN-s 65.24 -1.60 1.03 0.02
ArLSTM 64.38 -0.96 0.99 0

Table 3: Ablation study results. Higher is better for𝑀𝑔𝑒𝑛 , and
lower is better for𝑀𝑐𝑝 .

right hand is particularly evident in the ArLSTMThumb-f experi-
ment where𝑀𝑔𝑒𝑛 and𝑀𝑟𝑒𝑐 are even below par than HMM3. At the
same time, the𝑀𝑐𝑝 results outperform the rest of the experiments.
This is so interesting because although the 𝑀𝑐𝑝 denotes a high
understanding of how to play the piano, sometimes, the composi-
tion requires other fingers not entirely comfortable for character
or style requeriments [22]. Note that the ArLSTMThumb-f has a
similar performance on the left hand to the ArGNNThumb-s on
the𝑀ℎ𝑖𝑔ℎ ,𝑀𝑟𝑒𝑐 and𝑀𝑐𝑝 , indicating a great sequential coherence.
Pretraining the previous state-of-the-art methods, HMMs, FF-base
and LSTM-base, on the incomplete annotations of Thumbset did
not improve their performance, in comparison to not using pre-
training. To that extent, the recurrent neural networks had similar
performance, and the HMM baselines performed worse.

5.3 Ablation study
We analyse the influence of different components of the models,
ArLSTMThumb and ArGNNThumb-s, by substituting each compo-
nent with a simple alternative. The results are displayed in Table 3.
Without an autoregressive decoder.We substitute the decoder
with a fully connected network (FC) that adapts the encoder’s
output size to 5 classes or fingers. As shown in Table 3, the LSTM
alternative can not learn to get piano fingering. The ArGNNThumb-
s without autoregressive decoding learns how to find single notes
fingering, achieving a considerable 𝑀𝑔𝑒𝑛 . However, on the 𝑀𝑐𝑝

increase of 0.17, similar to Nakamura et al. [19] LSTM-base and
FF-base. The 𝑀𝑐𝑝 increase probably indicates ArGNNThumb-s is
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not considering the coherence of the sequence, producing several
hand change positions artifacts.
Without beam decoding.We replace the beam decoding with a
greedy search. In other words, instead of having a beam search of
six notes, we select the most likely finger. The decrease of 𝑀𝑔𝑒𝑛

and increase of 𝑀𝑐𝑝 suggests that beam decoding or forcing the
sequential coherence in fragments of six notes increases the APF
performance.
Without data augmentation. Not using data augmentation leads
to a smaller drop in performance on ArLSTMThumb-f than on
ArGNNThumb-s, supporting the idea that the former model is more
straightforward and less data-hungry than the latter. We note that
some augmentation may produce sequences of notes that do not
exist in the test set, although they are musically feasible.
Soft labels ablation. We train ArGNNThumb and ArLSTMThumb
without soft labels and this leads to a small decrease in𝑀𝑔𝑒𝑛 .
Freeze encoder ablation.We freeze the parameters of the encoder
from ArGNNThumb-s while fine-tuning it on PIG and we do the
opposite from ArLSTMThumb-f. This results in a slight difference in
𝑀𝑔𝑒𝑛 and a considerable improvement of𝑀𝑐𝑝 . Further experiments
are needed to understand why this happens.
Only PIG training.We train the ArLSTMThumb in the PIG domain
with below-par results. In the ArGNNThumb case, although𝑀𝑔𝑒𝑛

is higher, 𝑀𝑐𝑝 is also subpar, indicating it is not possible to learn
the autoregressive decoding on small datasets.
Only ThumbSet training. The proposed models achieve state-of-
the-art results trained solely on the ThumbSet dataset. We observe
solely a 1.6% and a 0.96% difference in 𝑀𝑔𝑒𝑛 for ArLSTMThumb
and ArGNNThumb respectively. Similarly, the increment in the𝑀𝑐𝑝

metric is small. This confirms the fact that it is possible to train
high-performance APF systems solely on the noisy dataset.

5.4 Case study
We analyse two selected examples showing the refinements of the
proposed methods in Figure 4. The autoregressive excerpt, Ar ex-
ample, shows a right-hand monophonic passage where sequential
coherence is needed. In contrast, the polyphonic excerpt, Poly ex-
ample, is a left-hand critical polyphonic passage. For each of the
excerpts, Figure 4 shows a comparison between the previous meth-
ods (HMM2 and LSTM-base), the proposed methods ArLSTMThumb-
f and ArGNNThumb-s, and the human expert annotations. The
human annotations coincide in the Ar example, while in the Poly
example, different alternatives are shown.

The Ar example shows that in the previous methods, the HMMs
were able to better capture sequential coherence than LSTM-base,
the latter having critical errors as the repetitions of the finger in
different consecutive notes (the semiquavers 6th and 7th). The
autoregressive finger outputs are the same as the human expert
annotations. Nevertheless, we observe that HMM2 predictions have
sequential coherence, although they do not match with the human
annotations.

The Poly example shows a polyphonic excerpt that requires all
notes to be legato, a difficult case for a pianists. To solve this, the
pianists in the PIG dataset change the fingers in the central re-
peated chords. The machine learning models, with the exception
of ArGNNThumb-s model that uses information about the simulta-
neous sounding notes, represent flat chords as broken chords. In

Figure 4: Two examples with piano fingering provided by the
compared methods and human expert annotators. The Ar
example is from Two-part invention in C major, J. S. Bach and
the Poly example comes from Piano Sonata K 332 in F major,
1st mov., W. A. Mozart.

many occasions, finding the fingering of a flat chord is the same as
finding a broken chord with the same notes. In the opposite case,
the ArGNN method outperforms the rest methods. In Figure 4, we
can see HMM2 and ArLSTMThumb-s consider the chords as broken
chords, LSTM-base has critical errors in the first half of the excerpt,
and ArGNNThumb-s handles the polyphonic representation differ-
ing solely in the third chord with the human annotators. However,
the difference is not a critical error.

6 CONCLUSIONS
In the present work, we propose a methodology to train complex
deep learning APF models from partially noisy data, outperforming
the current state of the art. Namely, we propose two autoregressive
models that learn the sequential coherence of fingering and work
towards reducing the hand change position effort, as measured
by new proposed metric 𝑀𝑔𝑒𝑛 . In addition to the openly available
source code, models, and ThumbSet dataset, we also provide an
evaluation framework to standardise the evaluation of the task.
The novel ThumbSet dataset opens the door to future research on
automatic piano fingering with data-intensive methods. As future
work we plan on exploring more complex techniques for handling
noisy labels and domain adaptation.
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