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1 はじめに
吹奏楽では各音符の音高や発音時刻などが揃った
合奏の実現が最初の課題であるが，経験の浅い演奏
者や指導者にとって合奏の調和度を認識することは
容易ではない．従来，管楽器の個別演奏を対象とした
連続音高や発音時刻の定量分析手法は数多く研究さ
れているが [1, 2]，合奏録音からその調和度を分析す
るためには新たな方法の開拓が必要である．本研究
では，吹奏楽の合理的な練習を支援するため，合奏の
調和度を定量的に分析する手法について調べる．
具体的には，クラリネットのユニゾン合奏における
演奏者の個別録音から音符単位で抽出する演奏特徴
量を用いて合奏の調和度を表すコヒーレンス度を計算
する方法（以下，I2Cと呼ぶ）を構築する（Fig. 1）．
また，こうして得られる各音符のコヒーレンス度の
値を全体録音データから推定するための機械学習手
法（以下，W2Cと呼ぶ）の構築も行う．さらに，吹
奏楽指導者による合奏録音の分析データとの照合に
より，これらの手法の有効性を検証する．

2 個別録音からのコヒーレンス度の計算
2.1 演奏特徴量の抽出
本研究では，音符ごとの連続音高と発音時刻，ラウ
ドネスに関するコヒーレンス度の計算方法について考
える．この準備として，まず各演奏者 a ∈ {1, . . . , A}
の個別録音から各音符 nの基本周波数（F0）xF0

a (n)

と発音時刻 xon
a (n)，ラウドネス xLN

a (n) の抽出を行
う．個別録音には楽器付近に設置する通常のマイクで
あるピンマイク，または，楽器に接触させてその振動
を記録するチューナーマイクが使用できるが，ここ
では他者の演奏音の混入が少ない後者のマイクを用
いる．チューナーマイク録音は，音響特性が通常のマ
イクと異なり，楽器のキーノイズの混入もあるため，
発音時刻やラウドネスの計算に工夫が必要である．
F0の抽出では，まず pYIN [3]によりフレームごと
にヘルツ単位での F0を取得し，これをセント単位の
値に変換する．音符単位の F0の値 xF0

a (n) は，次に
述べるMIDI採譜で得られる各音符の発音・消音時刻
により定められる音符区間においてフレーム単位の
F0を集約し，その中央値を求めることで計算する．
発音時刻の抽出には，演奏音源から各音符の（半音
単位の）音高と発音・消音時刻を推定するMIDI採譜
手法を用いる．具体的には，深層学習モデルである
CRNNに基づく自動採譜手法 [4]を用いる．この手法
の学習にはチューナーマイク録音とそれに同期した
MIDIデータが必要であるが，この同期MIDIデータ
を作成することは容易ではない．そこで，ピンマイ
ク録音とチューナーマイク録音の同期録音データを
収集し，Fig. 2に示す適応学習の方法により採譜モデ
ルを構築する．約 12時間の同期録音データを用いて
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Fig. 1 Flowchart of coherence calculation.
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Fig. 2 Adaptive training for MIDI transcription.

学習した採譜モデルによる MIDI採譜の評価結果を
Table 1に示す．ただし，COn，COnP，COnPOffは
発音時刻のみ，発音時刻と音高，発音時刻と音高と消
音時刻の一致を見る F値である．本手法では，汎用
的採譜手法 [5]や合成データを用いて学習した初期モ
デルに比較して精度が大幅に向上し，高精度の発音
時刻推定が可能であることが示された．
ラウドネスの抽出では，パワースペクトログラム

に対して A特性周波数重み付けを行って得られるフ
レーム単位のラウドネス値を用いて，F0と同様に音
符区間における中央値を求める方法が考えられる．こ
こでもチューナーマイク録音の音響特性により，通常
の計算で得られるラウドネス値は，音高や音色によっ
て実際の値から非線形に変化する．そこで，上記の同
期録音データを用いて，ピンマイク録音のラウドネ
ス値をチューナーマイク録音のメルスペクトログラ
ムから推定する手法を上述の CRNNを用いて構築す
る．本手法によるフレーム単位のラウドネスの平均推
定誤差は 3.07 dBであることが評価実験で示された．
2.2 コヒーレンス度の定式化
前節で得られた各音符 nに関する演奏特徴量 xϕ

a(n)

ϕ ∈ {F0, on,LN}から，2奏者間 a, b (a ̸= b) の差分
∆ϕ

ab(n) = |xϕ
a(n) − xϕ

b (n)|を計算する．これらの差
分から音符 nにおける集約化された差分を∆ϕ(n) =

gϕ({∆ϕ
ab(n)}) ∈ R≥0 のように計算する．ここで gϕ

は集約化を表す関数であり，具体的には平均（mean）
や二乗平均平方根（RMS），最大値（max）などが考
えられる．この∆ϕ(n)を用いて，音符 nにおける合



採譜手法 COn COnP COnPOff

CREPE Notes [5] 80.1% 79.5% 61.6%
初期モデル 74.2% 72.0% 61.0%
適応モデル 97.1% 97.1% 93.4%

Table 1 Evaluation results of MIDI transcription

for individual recordings.
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Fig. 3 Comparison of correlations between coher-

ence values and expert annotations.

奏のコヒーレンス度を Cϕ(n) = hϕ(∆ϕ(n)) ∈ [0, 1]

のように定義する．ここで，hϕは∆ϕ(n)をコヒーレ
ンス度の値域である [0, 1]に写す単調減少関数であり，
具体的には以下の 2つの関数形を考える．

hϕ(∆) =

{
exp[−(∆/σϕ)

pϕ ] （指数関数）
1/[(∆/σϕ)

pϕ + 1] （分数関数） (1)

パラメーター σϕ は差分のスケール，pϕ は差分に対
する感度を表す．
本手法（I2C）のコヒーレンス度の定義にある関数

gϕ, hϕ の具体形およびパラメーター σϕ, pϕ の値を求
める方法として，専門家による演奏分析データとの照
合により，人間の主観的な調和度を最もよく再現する
ものを選択する手法が考えられる．この方法を実行
するため，3名の演奏者によるクラリネット合奏を収
録し，その内の 6曲に対して吹奏楽指導者に演奏の
改善点の分析を音符単位で行ってもらった（ただし，
有効なデータが得られなかったラウドネスに関して
は第一著者が自ら分析を行った）．この結果は各音符
nと演奏要素 ϕに対する二値ラベル Bϕ(n) ∈ {0, 1}
（0 =改善が必要，1 =良好）として表される．

Cϕ(n)と Bϕ(n)の相関係数を最適化の尺度として
関数 gϕ, hϕの具体形を探索した結果を Fig. 3に示す．
F0と発音時刻では，最適な σϕはこれらの知覚量の弁
別閾の数倍程度であり，妥当な結果と言える．一方，
最適な相関係数は比較的低い値になっており，人間の
演奏分析では特徴量の差分の知覚よりも複雑な基準
が用いられている可能性がある．ラウドネスではコ
ヒーレンス度が全て 1となる場合が最適となったた
め，最適化の方法を改善する必要がある．
3 全体録音からのコヒーレンス度の推定
3.1 推定手法
実際の練習現場で個別録音よりも容易に収録でき
る全体録音（混合音のモノラル録音）から直接コヒー
レンス度を推定する手法（W2C）を深層学習を用い

比較データ F0 発音時刻 ラウドネス
W2C-I2C 0.455 0.467 0.076

W2C-人手分析 0.276 0.128 0.098
I2C-人手分析 0.341 0.241 0.098

Table 2 Evaluation results of coherence estimation.

て構築する．入力には全体録音の各音符区間のメル
スペクトログラムを用い，各演奏特徴量の特性に応
じて，F0とラウドネスでは発音時刻から消音時刻ま
での区間（1 s以上の場合は先頭の 1 sの区間），発
音時刻では発音時刻の前後 0.2 sの区間のデータを切
り取る．出力は各特徴量のコヒーレンス度で，学習
のターゲットには個別録音から計算したコヒーレン
ス度の値を用いる．この際，関数形は Fig. 3の最適
条件を用いる（ただし，ラウドネスでは gϕ = RMS,

hϕ =指数関数, σϕ = 3 dB, pϕ = 1とした）．深層学
習モデルには上述の CRNNを用い，学習には合計約
25分間の全体録音データを用いた．
3.2 評価実験
W2Cによるコヒーレンス度の推定値と I2Cによる

値および人手による演奏分析結果（2.2節）との相関
係数を測定した（Table 2）．W2Cと I2Cの比較で
は，F0と発音時刻は 0.46程度の相関係数が得られて
おり，W2C の手法の有効性がある程度確認できる．
より多くの学習データを用いることで，W2Cの誤差
は低減できる可能性があると考えられる．一方，ラウ
ドネスの相関係数は小さく，メルスペクトログラムか
らラウドネスのコヒーレンス度を推定することは難
しいことが示唆される．W2Cによる推定値と人間の
演奏分析データとの間の相関係数は，W2Cの誤差の
影響を反映した結果になっている．
4 まとめ
本研究では，管楽器のユニゾン合奏のコヒーレン

ス度を個別録音および全体録音から計算する方法を
構築した．I2Cではチューナーマイク録音から各演奏
特徴量を高精度で抽出する手法と，それらの差分に基
づくコヒーレンス度の計算法を実現した．専門家の演
奏分析との照合では，F0と発音時刻に関して中程度
の相関係数が得られた．今後の課題として，W2Cの
手法の改良，非同期の個別録音からのコヒーレンス
度の計算手法の構築，音符内での連続音高やラウド
ネスの変化を考慮した手法の構築などを考えている．
また，提案手法は多くの木管・金管楽器に適用可能で
あり，複数パートの合奏への拡張にも取り組みたい．
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