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Abstract—This study investigates a method for predicting
listener evaluation scores of melodies in relation to lyrics, with the
aim of improving the quality of songs generated by automatic mu-
sic composition systems. To address the limitations of supervised
learning approaches that rely on large-scale human evaluation
data, we propose a model that represents the implicit evaluation
process involved in music creation. This enables the estimation of
melody fitness to lyrics using only training data of melodies with
aligned lyrics. As a specific focus, we study Japanese songs, in
which the correspondence between musical elements and lyrical
features, such as accent patterns and word boundaries, has
long been discussed. By employing deep generative models of
melodies conditioned on lyrical features, we analyze the relevance
of various lyrical attributes to melody fitness and evaluate the
effectiveness of the proposed approach. Experimental results show
that the proposed method can predict listener evaluation scores
with high accuracy, achieving a correlation coefficient of 0.653
with human ratings.

I. INTRODUCTION

Automatic music generation has emerged as an active area
of research, with a wide range of methods developed based on
machine learning. Notable examples include techniques using
generative adversarial networks (GANs) [1], [2], variational
autoencoders (VAEs) [3], diffusion models [4], and Trans-
former architectures [5]. In addition to symbolic generation,
methods that directly synthesize audio waveforms have also
been proposed [6], [7]. While machine learning techniques
have made it possible to generate music that closely imitates
existing compositions, evaluating the artistic value of the
generated output and capturing listeners’ preferences remain
major challenges. Musical preferences play a significant role
particularly in generating novel musical content, as exemplified
in studies based on genetic algorithms using user evaluations
as the fitness function [8], [9]. Accordingly, addressing the
problem of automatic music evaluation is crucial for the
development of systems capable of generating high-quality
music across a broad range of styles.

Recent studies have explored the construction of machine
learning models that predict human evaluation scores based
on large-scale subjective data [10]. However, collecting such
evaluation data is costly, posing significant limitations on the
applicability of fully data-driven approaches across diverse
musical genres and styles. Furthermore, musical evaluation is
influenced not only by musical elements such as pitch, rhythm,
and harmony, but also by extra contextual factors, including

lyrics, accompanying visuals, and choreography [11]-[13].
This interplay of multiple modalities makes it particularly
difficult to disentangle the specific components factors that
affect listener preferences.

The purpose of this study is to develop a method for
predicting human evaluation scores for singing melodies, with
a particular focus on their dependence on lyrics. We develop
a method for predicting evaluation scores that does not rely
on a large amount of human evaluation data. Our approach
is grounded in the assumption that published works have
undergone an implicit internal evaluation by their creators.
Building on this assumption, we propose an artwork selection
model that represents this underlying music creation process.
We then formulate machine learning methods for estimating
the fitness of melodies to given lyrics using observed musical
data, and for predicting average listener evaluation scores
based on these fitness estimates.

As a concrete focus, we investigate Japanese songs, in
which the correspondence between lyrical features and melodic
elements is considered to influence evaluation scores through
their effects on listenability and singability. Given that the
Japanese language exhibits pitch accent, much work has been
made to investigate the relationship between melodic pitch
and the accent patterns of lyrics [14]-[16]. Melodic elements
include rhythm as well as pitch, and potential lyrical features
that may influence them include not only accent patterns
but also word boundaries and semantic content. To capture
the complex interplay among these components, we develop
machine learning techniques to model their relationships and
to analyze how various lyrical features contribute to the
evaluation scores of melodies.

II. DATA COLLECTION AND ANALYSIS

A. Background: Japanese Lyrics and Melody

The Japanese language exhibits a pitch accent system, in
which each syllable is assigned either a high or low pitch. For
example, the words “rain” and “candy” are both written as “a-
me” in Japanese but are distinguished by their pitch patterns:
the former is pronounced with a “high-low” accent pattern,
while the latter with a “low-high” pattern. Given this linguistic
characteristic, music theorists have proposed a principle of
melody composition in which the direction of pitch transitions
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Fig. 1. Example of a melody phrase in the data.

in the melody is aligned with the direction of accent transitions
in the lyrics [14].

This principle has also been utilized for music informa-
tion processing. The automatic song generation system Or-
pheus [15], imposes constraints on the pitch probabilities
according to the accent patterns in the lyrics. The study showed
that these constrained improved the user evaluation scores
of generated melodies. In another study [16], a system for
generating lyrics conditioned on melodies has been developed
on the basis of similar constraints involving accents and
punctuations of Japanese lyrics. Melody generation utilizing
the correspondence between melody and lyrical features has
also been studied for other languages such as Chinese and
English [12], [17], [18].

B. Construction of Melody Data with Lyrics

To analyze the correspondence between lyrical features and
melodic elements, we need melody data in which the lyrics are
aligned at the musical note level. Additionally, lyrical features
such as accent patterns and word boundaries must be extracted
through linguistic analysis. Given that no large-scale dataset of
Japanese songs with these conditions is publicly available, we
newly constructed an original dataset. The data comprises mu-
sical information from the melody and linguistic information
from the lyrics (Figure 1). Each note of a melody (p;, 7;)E, is
represented by a pair consisting of a pitch p; € {0,...,127},
expressed as a MIDI note number, and an onset time 7; € N,
measured in tick units, where one measure is divided into 48
ticks. The pitch is computed after transposing the melody into a
natural key, either C major or A minor. The lyrics are expressed
in two formats: the standard Japanese script (“plain text”) and
syllables aligned with each note (“note-aligned syllables”).
The plain text is used for the extraction of lyrical features
described later. Since 99.92% of the note-aligned syllables in
the dataset contain no more than three syllables per note, we
set the maximum number of syllables per note to three and
excluded phrases with notes exceeding this threshold. The data
are segmented into phrases, defined by line breaks in the plain
text. Phrases containing English characters, numbers, or special
symbols were excluded. In total, we collected 33, 751 phrases
(287,396 notes) from 1988 Japanese popular songs released
from 1960 to 2023.
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Fig. 2. (Top) Changes in the frequency distribution of melodic pitch
transitions conditioned on accent transitions in the lyrics. The red line indicates
the overall average frequency. (Bottom) Changes in the frequency distribution
of note value transitions due to word boundary labels in the lyrics. The case
“increase” indicates that the latter note is longer.

We consider the following lyrical features that may influence
melodic elements: accent patterns, word boundaries, part-
of-speech (POS) tags, semantic feature, and syllable labels.
Accent patterns, word boundaries, and POS tags are extracted
using the Japanese linguistic analyzer MeCab [19]. Following
previous studies [15], [16], accent patterns are represented by
binary sequences, where 0 indicates a low pitch and 1 indicates
a high pitch. Word boundaries are also represented as binary
labels, with 1 assigned to the first syllable of each word and
0 to the remaining syllables. POS tags are represented by
categorical labels ranging from 1 to 16, corresponding to the 16
major categories of Japanese parts of speech. Semantic features
are extracted using a Japanese Sentence-BERT model'. Each
phrase is represented as a 768-dimensional embedding vector.
To reduce the risk of overfitting due to high dimensionality, we
apply principal component analysis (PCA) to obtain a lower-
dimensional representation for use in the subsequent analysis.

C. Basic Data Analysis

We analyzed the dependence of melodic pitch on accent pat-
terns in the lyrics using the constructed dataset. The upper part
of Fig. 2 shows the frequency distribution of pitch transitions
for each type of accent transition across consecutive notes. The
results show that when the accent pattern exhibits an upward
or downward transition, the corresponding upward or down-
ward pitch transitions occur more frequently than the overall
average. This suggests that the degree of alignment between
accent transitions and the melodic pitch contour may serve as a
meaningful indicator for predicting melody evaluation scores.
We also analyzed the relationship between word boundaries
and note values. The lower part of Fig. 2 shows the frequency
distribution of note value transitions between consecutive notes
for each pattern of word boundary labels. The results indicate
that notes corresponding to single-syllable words tend to have
longer durations than their neighboring notes. However, such
clear correspondences are not easily observed for other lyrical

Thttps://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2



features and melodic elements. Accordingly, machine learning
is considered an effective approach for modeling the complex
relationships among these features and for predicting melody
evaluation scores.

III. METHOD

A. Construction of Fitness Function Based on the Artwork
Selection Model

To predict melody evaluation scores using machine learning,
we propose a method in which the fitness of a melody with
respect to the lyrics is first estimated, and the predicted
fitness is then used to infer the melody’s evaluation score. By
employing the following artwork selection model, the fitness
of a melody for a creator can be expressed as the ratio between
the unconditional generation probability of the melody and its
conditional probability given the lyrics. This function can be
learned using melody data with lyrics.

In the artwork selection model we assume that a creator
generates various candidate works and probabilistically selects
which ones to publish as artworks, using their fitness as
weights in the selection process. Formally, let P(X) denote
the generation probability of a candidate melody X, and let
W(X;Y) € Ry represent the fitness of melody X with re-
spect to lyrics Y. Then, the conditional generation probability
of X given Y, denoted as P(X|Y), can be expressed as

P(X|Y) = P(X)W(X;Y). (1)

Here, the undetermined scale of the fitness function W is
defined so that the above equation holds. Next, by applying the
consistency assumption between training and generation pro-
cesses the creators, which states that P(X) coincides with the
marginal probability of a melody P(X) =), P(X|Y)P(Y),
the fitness can be expressed as the ratio between the conditional
probability given lyrics and the unconditional probability

W(X;Y) = P(X|Y)/P(X). 2

Furthermore, through the following transformation, we de-
fine the note-level cross-entropy (CE) difference ACE(X;Y),
which is equivalent to the fitness W(X;Y):

logy W(X;Y) = —logy, P(X) — [~log, P(X[Y)]  (3)
= L(X)ACE(X;Y). (4)

Here, L(X) is the number of notes in melody X.

1) Construction of Generative Models: By constructing a
generative model of melody, we compute P(X|Y) and P(X),
which appear on the right-hand side of Eq. (2).

Although the melody data includes a variety of pitch ranges
and score positions, we assume that the fitness of a melody is
independent of these attributes. Therefore, to construct a gener-
ative model that is invariant to octave transposition of pitch and
measure-level translation of onset time, we represent melody
notes using extended pitch classes and metrical positions. The
extended pitch class ¢; € {0,...,35} is an extension of the
conventional pitch class defined as p; %12 (where “%” denotes
the modulo operation). This is a faithful representation of pitch

intervals up to 18 semitones above and 17 semitones below,
unlike the standard pitch classes can only faithfully represent
6 semitones above and 5 semitones below. This is defined as
g1 = p1%12 and by the following recurrence relation:

@ = [pi—1%12 + Clip*®; (o1 — p1—1)]%36. 5)

Here, Clip®(z) is a function that maps the pitch  into the
range {a, ..., b} by applying the minimal number of necessary
octave transpositions. The metrical position m; = 7;%48 €
{0,...,47} represents the relative timing within a measure,
faithfully capturing sequences of onset times with note val-
ues up to one measure in length. Accordingly, the melody
is represented as a sequence of extended pitch classes and
metrical positions X = (g, 7). Let y; denote the lyrical
features corresponding to the [-th note. Then, the conditional
and unconditional generation probabilities are expressed as

P(X) = P(qi., m1.1.), 6)
P(X|Y) = P(qu.,m1.L|y1.L)- )
Here, qi.; denotes the set of variables (qg, qx+1,.--,q1)-

As a simple example of a generative model, we first consider
a Markov model. In the unconditional Markov model, the
generation probabilities of the extended pitch class and beat
position are assumed to be independent. Furthermore, the
extended pitch class g; of the [-th note is assumed to depend
only on the preceding extended pitch class ¢;_; (similarly for
the metrical position). Under these assumptions, the generation
probability is expressed by the following equation:

P(X) = P(Ql)[ﬁp(qml—l)}])(ml){ﬁp(mﬂmz—l)]-

1=2 1=2

®
In the lyric-conditioned Markov model, the generation proba-
bility is factorized as P(X|Y) = P(q1.1|y1...)P(m1.0|y1.0)-
Here, we consider only the accent label @, € {0,1} and word
boundary label b; € {0, 1} as lyrical features for the I-th note.
These are defined from the accent labels a;5 € {0, 1} and word
boundary labels b;; € {0,1} of each syllable s within the I-th
note by the following equations:

a; = max{a;1, a;2,a;3}, b = max{by, b2, biz}. (9)

When considering the dependency of accent and word bound-
ary transitions with respect to the melody elements g;, m; of
each note [, the generation probability is expressed as

L
P(qu.rlyre) = Plailay,by) [ [ Plalai—1, @, a1, b, bi-1),
1=2
L
P(ma.p|yr.n) = P(malas, br) HP(ml|ml_1, ay, ar—1, by, bi—1).
1=2
Next, to construct a generative model that captures com-
plex relationships between lyrical features and melody el-

ements which cannot be represented by a Markov model,
we consider an autoregressive deep generative model based



on a long short-term memory (LSTM) network. The uncon-
ditioned LSTM takes (q;—1,m;—1) as input at each step I,
and output predicted probabilities P(qi(q1:(—1),m1.—1)) and
P(my|q1.q-1), M1:—1)). In the lyric-conditioned LSTM, the
outputs remain the same, but the input includes lyrical features,
using (g1, ml_l,y(l,h):(l+h)). By including the lyrical fea-
tures of surrounding notes within a half-width A in the input, it
becomes possible to directly model their dependencies. As the
lyrical feature y;, we use a combination of the accent labels
ais € {0, 1}, the boundary labels b, € {0, 1} for each syllable
s within note [, the syllable label c¢;s (84 types), POS label
djs (16 types), and semantic feature ¢; (n-dimensional vector).
The variables ¢;_1,m;_1, ais, bys, 15, dis are each represented
as one-hot vector of dimensions 36, 48, 2, 2, 84 and 16. If
the corresponding information is missing, the vector is zero-
padded. The semantic feature is provided as a phrase-level
vector, which is input to all notes uniformly (this component
remains n-dimensional regardless of h). Input dimension is
612h + n + 390. In the experiments described in Section IV,
comparisons are also made using only a subset of the lyrical
features as input. In such cases, the input dimensions, except
for the semantic feature, are kept fixed, and the unused feature
portions are zero-padded.

To estimate the fitness using the above Markov model and
LSTM network, each model’s parameters are trained using
the melody with lyrics data. During evaluation, the trained
parameters are used to calculate the generation probabilities
P(X) and P(X|Y) for the test data. Hereafter, the fitness
estimated by this method is denoted as Wijarkov(X;Y) and
Wistm(X;Y) for the Markov model and LSTM, respectively.

2) Conditional Probability-Based Estimation: As a method
for calculating the fitness of a melody with respect to lyrics
using a generative model, directly using P(X|Y) can also
be considered. In this case, the fitness estimated using the
probability Prsty(X|Y) from the lyric-conditioned LSTM
can be expressed as

Weond(X;Y) = Prgrm(X|Y). (10

The fitness Wistm(X;Y) are represented by the equa-
tion WystMm (X, Y) = Weond (X, Y)/PLSTM (X) where,
Prstm(X) is the generation probability from the lyric-
unconditioned LSTM.

3) Rule-Based Fitness Estimation: It is also possible to
estimate fitness using a rule-based method based on the prin-
ciple of alignment between lyrical accent pattern and melodic
contour. In this method, let Nac be the number of syllables
within a phrase where the accent goes upward or downward,
and Npatcn be the number of times the direction of pitch
transition in the melody matches at these accent transitions.
The fitness is then expressed by the following equation:

N, match
Wiae(X;Y) = Nac +c +e. 1D
The constant € is introduced to properly define the fitness when
Nac =0 or Npateh = 0, and is specifically set to € = 1073,

B. Prediction of Evaluation Scores

We treat the average evaluation scores of melodies obtained
from listening experiments as ground-truth data. Specifically,
given a lyric Y and two melodies X; and X, we define the
evaluation score of X as the proportion p(X71; X»,Y") of times
X is preferred over X» by the listeners.

As a method to predict this evaluation score from the fitness
W(X;Y) formulated in the previous section, we consider
using logistic regression. First, we assume that the fitness
of melody X to lyrics Y from the listener’s perspective,
denoted as W'(X;Y’), can be expressed as a function of
fitness W (X;Y") from the creator’s perspective. Specifically,
for fitness values based on rule-based methods or conditional
probabilities, we introduce a coefficient o and express the
listener’s fitness as W/(X;Y) = W(X;Y)“. The coefficient
« serves to adjust the fitness score, generally reflecting effects
such as listeners being less sensitive to differences in musical
attributes compared to creators. In the case of fitness based on
the probability ratio, W'(X;Y) is expressed as

W(X;Y)er,
W(X;Y)*-,

W(X;Y)>1;

wxy) <1 P

W/(X;Y){

Here, the coefficients av; and «_ are introduced to incorporate
an asymmetric correction effect with respect to whether the
probability ratio is greater than or less than 1.

Next, in a pairwise comparison of two melodies X; and
Xy for a given lyrics Y, if we assume that the selection
probabilities for each melody are determined based on the
relative ratio of their perceived fitness values W'(X;;Y") and
W’'(X5;Y) by the listener, then the selection probability of
X, can be expressed as

_ W'(X;Y)
CW(X;Y) W (XY

R(X1; X»,Y) (13)
Furthermore, in actual experiments, the listener’s selection of
a melody can be influenced by noise and unknown biasing
factors. If this effect is modeled as a linear function of
R(X1; X5,Y), then the final selection probability of X; can
be expressed as

P(X1;X2,Y) =0 (B1R(X1; X2, Y) + fo), (14)

where o(z) = 1/(1 + e™*) is the sigmoid function. By
Eq. (14), this method can be interpreted as a logistic regression
in which R(X7; X2,Y) serves as the explanatory variable.
The parameters o, a.y, a_, By, 51 are optimized using logistic
regression to minimize the squared prediction error.

By extending the above method, it is also possible to predict
evaluation scores by combining multiple fitness measures
described in Section III-A. For example, using both rule-based
fitness Wyye and LSTM-based fitness Wigtym, the predicted
selection probability p(X7; X5,Y") is expressed as

o(BaRusMm(X1; X2, Y) 4+ 1 Rmaten (X1; X2, Y)+6o). (15)



0.12

0.08
0.04

i —_
0.00 PA WB

SL POS SF(3 dim)

CE difference
(bits/symbol)

0.12

0.10
0.08 * - ' -

PA+POS WB+POS PA+WB PA+WB+POS

CE difference
(bits/symbol)

Fig. 3. (Above) Average CE difference for a single lyric feature. (Below)
Average CE difference for multiple lyric features. (PA: pitch accent, WB: word
boundary, SL: syllable label, POS: part of speech, SF: semantic feature)

IV. EXPERIMENTAL VALIDATION

We split the dataset described in Section II-B into training,
validation, and test sets in an 8:1:1 ratio. Both LSTM and
Markov models were trained to estimate fitness scores. For the
former, we used a 3-layer network with 512 LSTM units, with
a linear layer mapping the input to 512 dimensions at the input
side, and a linear layer followed by a softmax function at the
output side. In preliminary experiments, the optimal values for
the CE difference were found to be n = 3 for the dimension
of the reduced semantic feature, and h = 3 for the half-width
of the input window for other lyrical features. Accordingly,
these values are used hereafter.

A. Relevance of Individual Lyric Features to Fitness

To investigate the contribution of each lyrical feature to
the estimation of fitness based on the probability ratio, the
average CE difference for each lyric feature calculated using
the LSTM network is shown in Fig. 3(top). The average
CE differences for accent, word boundary, and POS features
were approximately 0.1 bits, which is sufficient to contribute
meaningfully to the fitness estimation. In contrast, the average
CE differences for syllable labels and semantic feature were
small, indicating that their contribution to the fitness estimation
is negligible. Regarding the syllable labels, overfitting may
have occurred due to the high dimensionality of the input.

The results when multiple elements (accent, word boundary,
and POS features) were included as inputs are shown in
Fig. 3(bottom). When both accent and word boundary fea-
tures were used, the average CE difference slightly increased
compared to when each was used alone. The slight increase
is likely due to the nature of Japanese, where the accent
often transitions upward at the second syllable, causing these
features to be correlated. Adding the POS feature reduced the
CE difference. Hereafter, the combination of accent and word
boundary features, which yielded the maximum average CE
difference, will be used as the lyrical features.

B. Listening Experiment

To collect real data on listener evaluation scores, we con-
ducted an experiment in which participants were presented
with two different melodies with the same lyrics and asked

TABLE I
EVALUATION RESULTS FOR VARIOUS FITNESS ESTIMATION METHODS.

Fitness estimation method RMSE  Correlation  p-value
Rule-based (W.y1e) 0.149 0.542 0.0135
Conditional probability (Weong) — 0.175 0.143 0.5467
Probability ratio Wtarkov 0.171 0.264 0.2602
Probability ratio Wr,sTm 0.159 0.443 0.0496
Wistm and Wigle 0.134 0.653 0.0018

to choose the one they found more preferable [20]. In the
experiment, we used 20 pairs of melodies corresponding to
20 different lyrics randomly selected from the test dataset.
The synthesized singing voices were generated using NEU-
TRINO [21] and presented in a random order. The pairs of
melodies for comparison were generated using the trained
lyrics-conditioned LSTM network and lyrics-unconditioned
LSTM network. To ensure the experiment to be informative
enough to reveal differences through pairwise comparison, we
selected melody pairs for which the CE difference was large
and positive for the former and small and negative for the latter.
For each melody pair ¢ the proportion p; (called selection rate)
of times the melody generated by the lyrics-conditioned LSTM
(the one with a larger CE difference) was selected was used
as the evaluation score.

The average value of p; obtained from the 1546 comparison
results by 186 participants was 0.561, and the deviation from
random selection (p; = 1/2) was statistically significant
(p = 1.35 x 107%). Additionally, when melodies generated
under the same conditions were presented with instrumental
sounds, the average value of p; was 0.452. This confirmed
that the significant difference in the average evaluation scores
from 1/2 was attributable to the relationship with the lyrics.
We examined the relationship between listers’ attributes (age,
experience of composition and performance, and daily music
listening time) and their selections of preferred melodies, but
no statistically significant dependence was observed.

C. Evaluation of Score Prediction

The results of the evaluation score prediction using the
method in Section III-B are shown in Table I. The root
mean squared error (RMSE) between the predicted and ob-
served values of evaluation scores was used as the evaluation
metric, and for reference, the correlation coefficient between
the predicted and observed values, along with its p-value, is
also provided. When using a single fitness, the rule-based
method exhibited the smallest error. In the comparison using
generative models, it was shown that using the probability ratio
is more effective than using conditional probabilities, and that
using the LSTM network was more effective than using the
Markov model. Additionally, when combining the probability
ratio from the LSTM network with the rule-based method,
the prediction error was smallest. In Fig. 4, an example can
be observed where the rule-based method yields the same
prediction for certain data points. The prediction was improved
by incorporating the fitness from the LSTM. This indicates
that evaluation score prediction can incorporate relationships
between lyrics and melody that cannot be captured by simple



Rule-based method LSTM+rule-based method

0.9 v O A
éf‘” th' P ?"7 ++;/+ 1
5 03/} i # i S oa +++ + i +

0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9
Predicted value Predicted value
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represent standard errors).

rules, through the use of deep generative models. Furthermore,
the learned weights (a4 = 0.001, a— = 0.933) suggest that
listener evaluation is more sensitive to low-fitness regions.

V. CONCLUSIONS

This study showed that, in predicting the evaluation scores
of melodies with respect to Japanese lyrics, accent patterns and
word boundaries in the lyrics contribute significantly, whereas
syllable labels, part-of-speech tags, and semantic feature have
relatively small contributions. It was found that fitness estima-
tion based on the probability ratio from a melody generation
model can predict the results of listening experiments with high
accuracy when combined with a rule-based method derived
from the principle of alignment between lyrical accent pattern
and melodic pitch contour. The proposed method can be
generalized as a framework for estimating the evaluation scores
of artworks in a more specific domain by using the ratio
between the generation probability of that data and that of data
in a broader domain. Due to its generalizability, this approach
could be applied to the automatic evaluation of vocal music in
languages other than Japanese, instrumental music, and even
artistic data beyond the domain of music.
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