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ABSTRACT

This paper describes neural singing transcription that estimates a se-

quence of musical notes directly from the audio signal of singing

voice in an end-to-end manner without time-aligned training data.

A conventional approach to singing transcription is to perform vo-

cal F0 estimation followed by musical note estimation. The per-

formance of this approach, however, is severely limited because the

F0 estimation errors propagate to the note estimation step and rich

acoustic information cannot be used. In addition, it is difficult and

time-consuming to split continuous signals of singing voices into

segments corresponding to musical notes for making precise time-

aligned transcriptions. To solve these problems, we use an encoder-

decoder model with an attention mechanism that can automatically

learn an input-output alignment and mapping, even from non-aligned

training data. The main challenge of our study is to estimate tempo-

ral categories (note values) in addition to instantaneous categories

(pitches). We thus propose a novel loss function for the attention

weights of time-aligned notes for semi-supervised alignment train-

ing. By gradually reducing the weight of the loss function, a bet-

ter input-output alignment can be learned much more quickly. We

showed that our method performed well for isolated singing voice in

popular music.

Index Terms— Automatic singing transcription, end-to-end

learning, sequence-to-sequence learning, encoder-decoder recurrent

neural networks, attention mechanism

1. INTRODUCTION

Automatic singing transcription (AST) refers to estimating a se-

quence of musical notes of a sung melody from music audio signals,

and forms a basis for music information retrieval (MIR) because

the melody is the most prominent part of popular music that influ-

ences the impression of a song. The estimated musical notes can

be used for singing voice generation [1], musical grammar analysis,

query-by-humming, and active music listening [2].

Many studies have been conducted on AST. A naive approach

to AST is to sequentially use a singing voice separation method that

extracts singing voice from music audio signals [3–5] and an F0 es-

timation method that estimates F0 trajectories from singing voice

[5–11]. This approach requires an additional step to estimate the

semitone-level pitches and note values of musical notes by quantiz-

ing F0 trajectories in the time and frequency domains. Most studies,

however, have focused on only pitch quantization for estimating pi-

ano rolls [12–14], while note-value quantization (a.k.a. rhythm tran-
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Fig. 1. Our encoder-decoder model with an attention mechanism for

end-to-end AST. This model is trained by minimizing the weighted

sum of loss functions for ground-truth pitches and note values, as

well as alignment information (onset times) if available.

scription) has been investigated independently [15–17]. Some stud-

ies have tried to jointly estimate the pitches and note values of mu-

sical notes from F0 trajectories using a musical language model that

represents the pitches, rhythms, and scales of musical notes [18,19].

The major problem of the aforementioned methods are that the errors

occurred in the F0 estimation adversely affect the note estimation.

In this paper, we propose an end-to-end approach for AST.

AST is similar to automatic speech recognition (ASR) in that au-

dio spectra are converted into a sequence of meaningful symbols

(musical notes or characters). Inspired by the success of sequence-

to-sequence or end-to-end learning in ASR [20–22] and machine

translation [23, 24], we focus on an encoder-decoder model with

an attention mechanism for directly estimating a sequence of mu-

sical notes from a sequence of vocal spectra. The encoder-decoder

model is a deep neural network (DNN) that can convert an input

sequence into an output sequence of different lengths. The attention

mechanism is an efficient method for dealing with long sequences

by setting attention weights (weak alignment) between output and

input sequences.

A key difference between AST and ASR is that temporal cate-

gories (note values) must be estimated in addition to instantaneous

categories (pitches). To deal with such fine temporal structure as

rhythms, it is crucial to train attention weights precisely. Although

a simple solution is to apply supervised learning for the attention

weights, instead of the common unsupervised learning, there is a

problem of the limitation of available training data for AST.

To solve this, we propose a novel framework based on semi-

supervised learning for the attention weights by using a limited

amount of partially inaccurate time-aligned data as guiding infor-

mation (Fig. 1). Specifically, we propose a novel loss function



that evaluates the input-output alignment estimated by the atten-

tion mechanism. If time-aligned data are available, we calculate

the cross-entropy loss between the estimated normalized attention

weights and the corresponding ground-truth weights for each note.

We find that when the model is trained successfully in an unsuper-

vised manner, the attention weights of each note tend to concentrate

around its onset frame. As the ground-truth weights for each note,

therefore, we choose a one-hot vector that is peaked at the onset

frame of the note. Although the onset time annotations are of-

ten unreliable, the model can learn correct alignment by gradually

reducing the weight of the attention loss function. The main contri-

bution of this study is an easy-to-implement general technique for

effectively avoiding bad local optima and accelerating convergence

in the framework of semi-supervised end-to-end learning when both

aligned and non-aligned data are available.

2. ATTENTION-BASED ENCODER-DECODER MODEL

This section reviews the standard encoder-decoder model with an

attention mechanism for sequence-to-sequence learning [21].

2.1. Encoder

The encoder transforms a sequence of feature vectors (input data)

X = [x1, . . . ,xT ] ∈ R
F×T into a sequence of latent representa-

tions H = [h1, . . . ,hT ] ∈ R
E×T , where T , F , and E indicate the

length of the input sequence, the dimension of the feature vectors,

and the dimension of the latent vectors, respectively. The encoder

is usually formulated as a recurrent neural network (RNN). In this

study, we use a multi-layer bidirectional long short-term memory

unit (LSTM).

2.2. Decoder with Attention Mechanism

The decoder predicts a sequence of symbols Y = [y1, . . . , yN ] from

the latent vectors H, where N indicates the number of symbols pre-

dicted by the decoder. yn ∈ {1, . . ., I} indicates the n-th predicted

symbol, where I indicates the vocabulary size of the decoder. The

vocabulary includes two special symbols: 〈sos〉 and 〈eos〉. The

attention-based decoder consists of a unidirectional RNN and recur-

sively calculates the following steps:

αn = Attend(sn−1,αn−1,H), (1)

gn =
T
∑

t=1

αntht, (2)

yn = Generate(sn−1,gn), (3)

sn = Recurrency(sn−1,gn, yn), (4)

where sn ∈ R
D indicates the n-th hidden state of the decoder, and

Attend, Generate, and Recurrency are functions that perform opera-

tions on vectors and matrices.

Eq. (2) represents the attention mechanism. αn ∈ R
T is a vector

of normalized weights representing the degrees of relevance between

the input sequence X and a note yn. Each element ofαn is given by

αnt =
exp(ent)

∑T

t′=1
exp(ent′)

, (5)

ent = Score(sn−1,ht,αn−1), (6)

where Score is a function that calculates a raw weight. In this paper,

we use a convolutional function [21] given by

fn = F ∗αn−1, (7)

ent = w
⊤ tanh

(

Wsn−1 +Vht +Ufnt + b
Att

)

, (8)

where F ∈ R
C×F is a convolutional filter, fn ∈ R

T×C is the result

of the convolution, and C and F indicate the number of channels

and the size of the filter. w ∈ R
A indicates a weight vector, W ∈

R
A×D , V ∈ R

A×E , and U ∈ R
A×C represent weight matrices,

and bAtt ∈ R
A represents a bias vector. Here, A is the number of

rows of W, V, and U, as well as the number of elements of bAtt.

Eq. (3) represents the generation of yn from the previous hidden

state sn−1 and the weighted sum gn as folows:

π = Softmax
(

Psn−1 +Qgn + b
Gen

)

, (9)

yn = argmax
yn∈{1,...,K}

(πyn) , (10)

where P ∈ R
I×D , Q ∈ R

I×E represent weight matrices, and

bGen ∈ R
I is a bias vector.

Eq. (4) represents the calculation of the next state sn. Note that

the ground-truth symbol is used as yn in the training phase, whereas

in the inference phase, yn is predicted by the decoder at the previ-

ous step and the symbol prediction stops when the output sequence

reaches a specified maximum length or when 〈eos〉 is generated.

3. PROPOSED METHOD

This section explains the proposed method of AST with a modified

attention-based encoder-decoder model (Fig. 1).

3.1. Problem Specification

Our goal is to train an encoder-decoder model that takes as input

a mel-scale spectrogram X = x1:T ∈ R
F×T of an isolated solo

singing voice and outputs a sequence of musical notes Y = y1:N =
(pn, vn)1:N by using the onset frames of those notes Z = z1:N if

available, where T , F , and N indicate the number of time frames,

that of frequency bins, and that of musical notes, respectively. xt ∈
R

F indicates the mel-scale spectrum at frame t. Each note yn is

represented as a pair of a semitone-level pitch pn ∈ {1, . . .,K} and

a 16th-note-level duration vn ∈ {1, . . ., L}. K and L indicate the

size of the pitch vocabulary (including the rest) and that of the note-

value vocabulary, respectively. zn ∈ {1, . . ., T} indicates the onset

frame of the musical note yn in the spectrogram X.

3.2. Pitch and Note Value Decoder

In AST, it is necessary to output two symbols: a pitch and a note

value. One possibility is to regard the pair of a pitch and a note value

as one symbol. Such a model, however, is difficult to train from a

limited amount of training data because the joint vocabulary size is

I = K×L. To reduce the vocabulary size to I = K+L, we extend

the decoder to separately output both symbols at the same time as

follows:

φ = Softmax
(

P̂sn−1 + Q̂gn + b̂
)

, (11)

pn = argmax
pn∈{1,...,K}

(φpn) , (12)

ψ = Softmax
(

P̄sn−1 + Q̄gn + b̄
)

, (13)

vn = argmax
vn∈{1,...,L}

(ψvn) , (14)

where P̂ ∈ R
K×D , Q̂ ∈ R

K×E , P̄ ∈ R
L×D , and Q̄ ∈ R

L×E

indicate weight matrices, and b̂ ∈ R
K and b̄ ∈ R

L indicate bias

parameters. To treat a pitch and a note value as separate symbols, we

use two different 〈sos〉 and 〈eos〉 symbols for the pitch and note-

value prediction, In short, the pitch vocabulary includes 〈sos p〉
and 〈eos p〉, and the note-value vocabulary includes 〈sos v〉 and

〈eos v〉.



3.3. Loss Function for Attention Weights

We define a loss LAtt for attention weights α= [α1, . . . ,αN ]⊤ ∈
R

N×T to guide them to ideal values. To calculate LAtt, the guiding

ground-truth weights β for α are introduced by using the optional

data Z. We find that when the model is successfully trained without

calculating LAtt, the attention weights of each note tend to concen-

trate around its onset frame. A one-hot vector is thus considered to

be a good choice for β as follows:

βnt =

{

1 (zn = t)

ε (otherwise)
, (15)

where ε is a small positive number. After each row of β is normal-

ized, LAtt is given by the cross entropy as follows:

LAtt = −
λ

N

N
∑

n=1

T
∑

t=1

βnt logαnt, (16)

where λ is a hyperparameter to scale loss LAtt, which is gradually

decreased during training to learn optimal input-output alignment

that is considered to be different from hard alignment β.

3.4. Training and Inference Algorithms

In the training phase, the pitch and note value are separately con-

verted to one-hot vectors, and then input to the decoder. The loss

LPitch for the output pitches and the loss LValue for the output note

values are given by their cross entropies. The sum of LPitch, LValue,

and LAtt is defined as the total loss function to be minimized. In the

inference phase, the pitch and note value obtained by Eqs. (12) and

(14) at the previous time step are converted into one-hot vectors and

used for predicting the current symbol. This process stops when

the output sequence reaches a specified maximum length or when

〈eos p〉 or 〈eos v〉 is generated.

4. EVALUATION

This section describes experiments conducted to evaluate the perfor-

mance of the proposed model for AST.

4.1. Experimental Data

To evaluate our model, we used 54 popular songs with reliable an-

notations from the RWC Music Database [25]. We split the audio

signals of isolated singing voice and the corresponding time-aligned

musical scores [26] into all possible segments ranging from 1 mea-

sure to 8 measures with an overlap of 1 measure. When a note

crossed a bar line, it was included in the precedent measure. Rests in

a measure were concatenated into a single rest. Musical notes longer

than a whole note were discarded. We used 44, 5, and 5 songs as

training, validation, and test data, respectively.

All songs were sampled at 44.1 kHz, and we used an STFT with

a Hann window of 2048 points and a shifting interval of 441 points

(10 ms) for calculating magnitude spectrograms, which we normal-

ized to make the maximum value 1. Since a tempo determines note

values, which would be difficult to correctly estimate for the pro-

posed method without any mechanism to estimate tempos, all songs

were modified to a BPM of 150 using a phase vocoder for the train-

ing, validation, and test data. We standardized the spectrograms for

each frequency bin, and then calculated the mel-scale spectrograms

with 229 channels.

4.2. Configurations

The vocabulary of pitches consisted of a rest, 〈sos p〉, 〈eos p〉,
and 40 semitone-level pitches from E2 to G5 (K = 43). The vo-

Table 1. Word error rates on the test data.

Configuration of λ NER [%] PER [%] VER [%]

λ = 1 48.8 31.6 34.8
λ = 0 119.8 90.0 96.8

λ is gradually reduced 43.0 24.7 29.6

cabulary of note values consisted of 〈sos v〉, 〈eos v〉, and 16
values which were integer multiples of a 16th note up to a whole

note (L = 18). We discarded any data containing out-of-vocabulary

notes, and it was also assumed that an input sung melody could be

represented as a monophonic sequence of musical notes.

We applied frame stacking [27] with a stack size of 5 and a skip

size of 1 to the mel-scale spectrograms, and added zero frames at the

both ends to align with 〈sos〉s and 〈eos〉s. The encoder consisted

of five-layers of bidirectional LSTMs with 300 × 2 cells. We set

the dropout rate to 0.2 for each layer. The decoder consisted of one-

layer LSTM with 200 cells. The number of channels and the filter

size wereC = 10 and F = 100. We used a padding size and a stride

of convolution in the attention mechanism of 50 and 1, respectively.

Adam [28] with a standard setting was used to optimize the pro-

posed model. The hyperparameter A was 200. To avoid overfitting,

a weight decay (L2 regularization) with a controllable hyperparame-

ter of 10−5 was used. To prevent weight parameters from diverging,

gradient clipping with a threshold of 5.0 was also used. All weight

parameters of fully-connected layers were initialized with random

values drawn from the uniform distribution U(−0.1, 0.1). The fil-

ter of the one dimensional CNN in the attention mechanism and the

weight parameters of the encoder and decoder were initialized by

He’s method [29]. All bias parameters were initialized with zeros.

The small positive value ε was set to 10−4. The batch size and the

number of epochs were 20 and 15. Pytorch v0.4.1 [30] was used for

implementation.

To verify the effectiveness of LAtt, we compared the following

three configurations of the hyperparameter λ:

• λ is fixed to 1.

• λ is fixed to 0.

• λ is initialized to 1 and reduced by 10−4 at each iteration.

We also examined the effectiveness of the semi-supervised learning

when only a part of Z is available. We randomly selected data from

Z at a rate of 5%, 10%, 25%, 50%, and 75%, and only the selected

data were used to calculate the guiding ground-truth weights β and

the loss function LAtt with a gradually reduced λ. For evaluation,

we used the model which minimized the average of validation losses

per an epoch during training.

4.3. Evaluation Metrics

Performance was measured using word error rate (WER) defined as

WER =
NS +ND +NI

N
× 100 [%], (17)

where the numerator represents the Levenshtein distance between

ground-truth and estimated note sequences. NS , ND , and NI indi-

cate the minimum number of substitutions, deletions, and insertions

required to change the estimated sequence into the ground-truth. N

indicates the number of ground-truth musical notes. We used three

variants of WER: note error rate (NER) for evaluating both pitches

and note values, pitch error rate (PER) for evaluating only pitches,

and value error rate (VER) for evaluating only note values.
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4.4. Experimental Results

Experimental results are shown in Table 1. The models obtained us-

ing the proposed loss function clearly outperformed those obtained

with λ = 0. Fig. 2 shows NERs calculated on the validation data

during the training of each proposed model. It indicates that the pro-

posed loss function was effective in accelerating the convergence of

NERs and finding a better solution with lower validation loss. An

interesting fact is that better WERs were obtained by gradually re-

ducing the value of λ than by fixing λ to 1. Since the time-aligned

onset annotations and guiding ground-truth weights β were not al-

ways accurate, gradually reducing λ enables the proposed model to

automatically find better time alignment.

Examples of attention weights and musical notes estimated

by the proposed model are illustrated in Fig. 4. The yellow score

estimated with λ = 0 included many 8th notes that were not in

the ground-truth score, and vague attention weights were learned.

On the other hand, the blue and green scores estimated using the

proposed loss function were nearly correct, and peaked attention

weights were learned. Given that musical note estimation failed

with softly-learned attention weights, it seems to be reasonable to

use the peaked ground-truth weights. Although a rest that was not in

the ground-truth score was estimated near the center of the bottom

score, the input spectrogram certainly had an unvoiced interval near

the 300th frame. The annotated data regards the silence as a contin-

uation of the musical note, whereas the proposed method estimated

a rest for the silent section of the spectrogram. Offset detection is

still an open problem in music transcription, and we will consider

offsets further in future work.

Experimental results with different usage rates of Z are shown

in Fig. 3. Note that the cases of using 0% and 100% of Z in Fig. 3

correspond to the second and third rows of Table 1, respectively. As

shown in Fig. 3, the WERs were almost monotonically reduced as

the usage rate of Z was increased. Especially, the WERs were dras-

tically reduced even if only 5% of Z was used. This indicates that

the loss function LAtt is very effective even when a small amount of

supervised data is available.
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by the proposed method. Red, blue, yellow, and green horizon-
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squares indicate the onset positions of the musical notes. The top two

figures are the input spectrogram and the ground-truth musical notes.

The subsequent figures are attention weights and musical notes for

λ = 1, λ = 0, and the gradual reduction of λ from top to bottom.

5. CONCLUSION

This paper has presented the method for estimating the musical notes

of a sung melody with an attention-based encoder-decoder model.

We extended the standard model to simultaneously predict a pitch

and a note value at each step. We also proposed a new loss func-

tion for attention weights and a semi-supervised training method for

better performance and faster convergence. The experimental results

showed that the proposed encoder-decoder model has great potential

for end-to-end AST, and that the performance of AST was improved

by using the attention loss function.

One of the most important research directions for future work

is to integrate the proposed model with an end-to-end RNN for es-

timating time-varying tempo and beats/downbeats from audio sig-

nals. Although tempo changes often occur in popular songs, the

proposed model assumes that the tempo of a song is constant. Such

integration should improve the robustness of the note value estima-

tion. We would also like to extend the proposed method to directly

deal with polyphonic music signals without singing voice separation.

This would enable us to leverage a huge amount of music recordings

with non-aligned melody transcriptions.
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