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ABSTRACT

A score-following algorithm for polyphonic MIDI perfor-
mances is presented that can handle performance mistakes,
ornaments, desynchronized voices, arbitrary repeats and
skips. The algorithm is derived from a stochastic perfor-
mance model based on hidden Markov model (HMM), and
we review the recent development of model construction.
In this paper, the model is further extended to capture the
multi-voice structure, which is necessary to handle note re-
orderings by desynchronized voices and widely stretched
ornaments in polyphony. For this, we propose merged-
output HMM, which describes performed notes as merged
outputs from multiple HMMs, each corresponding to a voice
part. It is confirmed that the model yields a score-following
algorithm which is effective under frequent note reorder-
ings across voices and complicated ornaments.

1. INTRODUCTION

Automated matching of notes in music performances to
notes in corresponding scores in real time is called score
following, and it is a basic machine-listening tool for real-
time applications such as automatic accompaniment and
automatic turning of score pages. Since the first studies
[1, 2], many studies have been carried out on score follow-
ing (see [3] for a review of studies in this field, and for
more recent studies, see, e.g., [4, 5, 6, 7], just to mention
a few). Score-following algorithms generally accept either
acoustic signals or symbolic MIDI signals of performances
as input. Algorithms for acoustic signals are applicable to
a wider range of instruments and situations, and they have
been improved over the years [8, 5, 6, 9]. On the other
hand, using MIDI inputs has advantages in quick corre-
spondences to onsets and in clean signals [10, 11, 4, 7],
and it has potentially vast demand for score following of
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polyphonic piano performances. We focus on polyphonic
MIDI signals for inputs in this paper.

A central problem in score following is to properly and
efficiently capture indeterminacies and uncertainties of mu-
sic performance, which are included in tempos, noise in
onset times, dynamics, articulations, ornaments, and also
in the way of making performance mistakes, repeats, and
skips, especially in performances during practice [7]. Stochas-
tic models are often used to derive algorithms that handle
these indeterminacies and uncertainties [3]. Performance
mistakes and tempo variations have been treated since the
earliest studies [1, 10]. Repeats and skips to restricted
score positions were discussed in [4, 12] for monophonic
performance, and generalization to arbitrary repeats and
skips for polyphonic performance was discussed in [13, 14,
7]. Recently, quantitative analysis and stochastic modeling
of performances with ornaments were carried out [15], and
an accurate score-following algorithm has been obtained.
One of the purposes of this paper is to report the current
status of these studies.

In [15], it was found that reorderings of performed notes
across voices in complex polyphonic passages such as poly-
rhythmic passages and passages with many ornaments re-
mains as a major cause of matching errors. The reorder-
ing is caused by asynchrony between voices and widely
stretched ornaments, manifesting the complicated tempo-
ral structure of polyphonic performance [16]. The same
problem has been addressed in studies on offline score-
performamce matching [17, 18, 19]. It has been observed
that the temporal structure is much simpler inside each
voice part 1 [17, 18], suggesting that use of voice informa-
tion is essential for precise score following. Because voice
information of performed notes is implicit in piano perfor-
mance, an algorithm should hold a function to estimate the
voice part of each note during score following, and it must
be computationally efficient for real-time processing.

In this paper, we propose a score-following algorithm us-
ing both voice information and temporal information which
can further handle note reorderings due to polyphonic struc-
ture. It is derived from a hidden Markov model (HMM) of

1 In this paper, a voice part signifies a totality of single or multiple
voices.
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performance which extends the model in [15] to capturing
multi-voice structure. The performed notes are described
as merged outputs from multiple HMMs, each correspond-
ing to a voice part. The basic model, which is named
merged-output HMM, is also potentially useful for other
tasks in music information processing, and we discuss the
model and its inference algorithms in detail. A part of this
work was reported in [20]. Details and extended discus-
sions of the model and algorithm will be reported else-
where.

2. TEMPORAL HMM OF PERFORMANCE AND
ARBITRARY REPEATS AND SKIPS

In this section, we briefly review our works [7, 15] to pre-
pare for the following sections. For details, see the original
papers.

2.1 Temporal HMM

A score-following algorithm should hold a set of complex
rules to capture various sources of indeterminacies and un-
certainties of music performance mentioned in Section 1.
Use of stochastic models has been shown to be effective
to derive such an algorithm [3]. One constructs a stochas-
tic model that yields the probability of a sequence of in-
tended score positions and of generated performed notes
based on a score, and the score-following problem can be
restated as finding the most probable sequence of intended
score positions given a performance signal. HMM is par-
ticularly suited for this because it effectively describes the
sequential, erroneous, and noisy observations of music per-
formance, and there are computationally efficient inference
algorithms [21, 8].

The use of temporal information is important for score
following of performances including ornaments such as
trill, arpeggio, and grace notes, since the clustering of per-
formed notes into musical events, e.g., chords or arpeg-
gios, often becomes ambiguous without it. An HMM was
proposed to describe the temporal information explicitly.
There are two equivalent representations of the model, one
describes time as a dimension in the state space and the
other has output probability of inter-onset intervals (IOIs).
The latter representation is explained in the following.

First, let i label a unit of score notes that is represented
by a state, which will be called a musical event and spec-
ified in Section 2.3. The state space of the model is rep-
resented by an intended musical event im, where m =
1, · · · ,M indexes the performed notes with the total num-
ber M . The pitch and onset time of the m-th performed
note are denoted by pm and tm. The music performance
can be modeled as a two-stage stochastic process of choos-
ing the intended musical events first and then outputting
the observed performed notes. The first stage is described
as transitions between states, and the temporal information
can be described as output of IOI δtm = tm − tm−1 at
each transition. Assuming that the probability of choos-
ing the state im is only dependent on the previous state
as P (im|im−1) = aim−1im and the output probability of
pitch and IOI is only dependent on the current and the pre-

Straight
progression

Large skip
Note deletion

Chordal note,
note/chord insertion

Repeats

Figure 1. Transitions of the HMM for a simple passage
and their interpretations [15].

vious states as P (pm, δtm|im−1, im) = bim−1im(pm, δtm),
the probability of the performance sequence (pm, im, tm)Mm=1

is given as

P
(
(pm, im, tm)Mm=1

)
=

M∏

m=1

aim−1imbim−1im(pm, δtm),

(1)
where the factors for m = 1 mean the initial probabilities
by abuse of notation.

The transition probability aij describes how players pro-
ceed in the score during performance (Figure 1), and the
output probability describes how they actually produce per-
formed notes. These probabilities can be obtained from
performance data in principle. However, for efficiency of
learning parameters, the dependence on the state pair is as-
sumed to be translationally invariant in the state space, and
the output probability is factorized into independent pitch
and IOI probabilities. Then, bij(p, δt) = bpitchj (p)bIOI

ij (δt),
where we further assumed that the pitch probability is only
dependent on the current state for simplicity.

2.2 Repeats and skips, and computational cost

As shown in Figure 1, large repeats and skips are described
by the transition probability aij with large |j − i|. Since
it is difficult to anticipate all score positions from and to
where players make repeats and skips, it is practical to con-
sider arbitrary repeats and skips, which can be expressed
as aij ̸= 0 for all i and j. In this case, all score positions
and transitions must be taken into account at every time,
and the computational cost for the conventional inference
algorithm is large for long scores. For example, a Viterbi
update requires O(N2) complexity, where N is the num-
ber of states, which is too large for real-time processing
when N ! 500.

There are solutions to reduce the computational cost by
using simplified models, one of which is the model with
uniform repeat/skip probability where aij is constant for
large |j − i|. It can be shown that the computational com-
plexity can be reduced to O(DN) when aij is constant for
j < i − D1 or j > i + D2 (D = D1 + D2 + 1). The
value of D is 3–10 in practice, and hence the complexity
is significantly reduced. We can generalize the model to
outer-product HMM, where aij is an outer-product of two
vectors for large |j − i| while keeping the computational
efficiency. The details of the models and analyses of ten-
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Figure 2. Example of homophonization and HMM state construction. The HMM states are illustrated with their state type
and main output pitches. The large (resp. small) smoothed squares indicate top-level (resp. bottom-level) states.

dencies in repeats and skips of actual performance data are
given in [7].

2.3 Score representation and state construction

An HMM state must be related to a certain unit of score
notes. It can be related to a chord in a simple passage, as in
Figure 1. To capture the temporal structure of polyphonic
performance with ornaments properly, however, we need
more labor. To explain the state construction, we begin
with a score representation for a fairly general polyphonic
passage. A polyphonic passage H , or a score, is defined
as a composition of homophonic passages H1, · · · , HV

and written as H =
⊕V

v=1 Hv , where each Hv (v =
1, · · · , V ), which is called a voice, is of the form

H = α1β1y1 · · ·αnβnyn. (2)

Here yi is either a chord, a rest, a tremolo, or a glissando,
and αi and βi denotes after notes and short appoggiat-
uras, which can be empty if there is none. (A short ap-
poggiatura is a note with an indeterminate short duration
notated with a grace note, and an after note is a short ap-
poggiatura which is almost definitely played in precedence
to the associated metrical score time.) In the convention,
αi, βi, and yi have the same score time, and after notes in
αi is associated with the previous event yi−1.

Given a polyphonic passage, we combine the constituent
homophonic passages into a linear sequence of composite
factors each containing all onset events at a score time. It
is written as

H̃ = α̃1β̃1ỹ1 · · · α̃N β̃N ỹN . (3)

This procedure is a generalization of Conklin’s “homo-
phonization” [22], and we call H̃ the homophonization of
H (Figure 2).

The model is described with a two-level hierarchical HMM,
and a state in the top HMM corresponds to a factor α̃iβ̃iỹi

in H̃ . If the factor contains trill, tremolo, or short ap-
poggiaturas, the bottom HMM is constructed with possi-
bly multiple substates as long as the temporal order of the
substates is determinate in straight performances without
mistakes. Three types for the substates, “CH”, “SA”, and
“TR”, each representing a generalized chord, short appog-
giatura, and trill events, are considered, and the transition
probabilities of the bottom HMM are determined through
an argument on expected realizations. The transition prob-
ability in the top HMM is similar to that in the simple
model in Figure 1, whose values were obtained in [7]. Ex-
plicit forms of output probabilities are explained in [15].

3. MERGED-OUTPUT HMM

3.1 The idea of merging outputs of multiple models

A potential problem of the model in Section 2 is that it does
not properly capture reorderings of performed notes due to
voice asynchrony or widely stretched ornaments. Voice
asynchrony influences the ordering of performed notes at
different score times in different voices, especially in fast
or polyrhythmic passages (Figure 3(a)). A widely stretched
ornament, typically a long chain of short appoggiaturas, in
polyphonic passages can overlap with notes in other voices
with different score times (Figure 3(b)).

Since the note reorderings can be described by neighbor-
ing transitions similarly as insertion and deletion errors,
one may wonder if they are already treated properly by the
previous model. However, this is not true as long as the
translationally-invariant transition probability is assumed
because such erroneous transitions are rare in most pas-
sages, and probability values obtained from many perfor-
mances do not reflect such reorderings well, or the whole
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(a) Polyrhythmic passage

(b) Passage with a widely stretched ornament

(c) Sustained trill and repeated chords/arpeggios

Figure 3. Examples of passages which can induce errors
in score following by a simple (one-part) temporal HMM.

result may be crushed if we adjust the values for partic-
ular passages. Changing the probability values for a par-
ticular set of states can help, but there remains a problem
of automatically identify the corresponding score positions
and giving suitable values, which requires knowledge of
the structure of the note reorderings. In particular, it is
difficult to recognize the structure of the reorderings from
the state constructed via homophonization, since the voice
structure is contracted and mostly lost in the process of ho-
mophonization. If we could preserve the voice structure in
the model, it may become much easier.

Another problem arises, for example, when a trill in the
right-hand voice part is superposed with a passage with
a repeated chord in the left-hand voice part (Figure 3(c)).
The matching of the left-hand chords becomes more am-
biguous since the long inter-chord IOI in the left-hand voice
part is interrupted by small IOIs of trill notes and can-
not be observed directly. Of course, we could consider
a higher-order Markov model to keep temporal informa-
tion from far past, but it is not viable in terms of compu-
tational efficiency for real-time processing. Again, if we
could preserve the voice structure and process notes in dif-
ferent voices separately, the problem seems much reduced.

Given the above problems as well as an observation that
the sequential regularity is more well-kept inside each voice
part [17, 18], which can be well described with an HMM,
one can expect a solution with a model in which poly-
phonic performance is described with multiple HMMs and
outputs of the HMMs are merged into the sequence of per-
formed notes.

3.2 Description of the model

The idea of the following model is to first consider an
HMM for each voice, or more precisely, each voice part
consisting of several voices, and combine all the HMMs
into one model by merging the outputs of the HMMs. The
crucial point is that each output observation is emitted from
one of the HMMs, and the other HMMs do not make a
transition at the time. The whole model is naively a prod-
uct model of HMMs, but it is shown to have efficient in-
ference algorithms according to this condition. As we will
discuss, some interactions between the HMMs can also be
introduced while keeping the computational efficiency.

In the following, we describe the merged-output model
of general HMMs. For simplicity, we mainly consider the
simplest case of two voice parts. Let a(1)ii′ and a(2)jj′ be tran-
sition probabilities of the two models, and let b(1)ii′ (o) and
b(2)jj′(o) be output probabilities with an output symbol o.
We consider the general case that output probabilities de-
pend on both the current and previous states, and that the
state spaces of the models can be different.

The state of the totality of the models is represented as a
pair (i, j). Introducing a variable η = 1, 2, which indicates
which of the model makes a transition at each time, the
state space of the merged-output model is indexed by k =
(η, i, j). When there is no interaction between the HMMs,
they are coupled only by a stochastic process of choosing
which of the HMMs transits at each time, which is assumed
to be a Bernoulli (coin-toss) process. Let the probability of
the Bernoulli process be α1 and α2 (α1+α2 = 1), and then
the transition of the merged-output model is described by
a probability

akk′ = P (k′|k) =
{
α1a

(1)
ii′ δjj′ , η′ = 1;

α2a
(2)
jj′δii′ , η′ = 2.

(4)

The output of the transition obeys the output probability of
the chosen HMM, and it is written as

bkk′(o) = P (o|k, k′) =
{
b(1)ii′ (o)δjj′ , η′ = 1;

b(2)jj′(o)δii′ , η′ = 2.
(5)

Eqs. (4) and (5) show that the merged-output model is itself
an HMM, which we call merged-output HMM. Each com-
ponent HMM is called a part HMM. We emphasize that
the current state of the non-transiting part HMM is kept
in the state label k′, and hence the voice-part structure is
preserved in the merged-output HMM.

We can also introduce some interactions between the part
HMMs as

akk′ =

{
α1(k)a

(1)
ii′ δjj′φ

(1)
kk′ , η′ = 1;

α2(k)a
(2)
jj′δii′φ

(2)
kk′ , η′ = 2,

(6)

bkk′(o) =

{
b(1)ii′ (o)δjj′ψ

(1)
kk′(o), η′ = 1;

b(2)jj′(o)δii′ψ
(2)
kk′(o), η′ = 2.

(7)

Here α1(k) + α2(k) = 1, and akk′ and bkk′(o) satisfy
proper normalization conditions. Applicational examples
of the interaction factors αη′(k), φ(η

′)
kk′ , and ψ(η′)

kk′ (o) will
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Figure 4. Schematic illustration of merged-output HMM.

be discussed in Section 3.4. The merged-output HMM
can also be generalized for more than two voice parts, and
we can also consider higher-order Markov models for both
η and iη . A schematic illustration of the merged-output
HMM is given in Figure 4.

A similar HMM has been proposed in [23]. The most
significant difference is that only one of the component
HMMs transits and outputs at each time in the present
model, which requires an additional process of choosing
the component HMM at each time. Consequently, the way
one can introduce interaction factors is also different. As
we discussed above, the property is particularly important
for the present model to be effectively applied for poly-
phonic performance.

3.3 Inference algorithms and computational
complexity

The Viterbi, forward, and backward algorithms are typi-
cally used for inference of HMMs [24]. We discuss the
Viterbi algorithm as an example in the following, and sim-
ilar arguments are valid for the other algorithms. For an
HMM with N states in which all states are connected with
transitions, a Viterbi update requires O(N2) computations
of probability. First, suppose a two-part merged-output
HMM, and let I and J be the number of states of the
part HMMs. Then the number of states of the merged-
output HMM is 2IJ , and the computational complexity is
naively O(4I2J2). However, since the transition and out-
put probabilities of the merged-output HMM has a special
form in Eq. (6), it is reduced to O(2IJ(I + J)). In gen-
eral, the computational complexity for an Np-part merged-
output HMM is O(NpI1 · · · INp(I1+· · ·+INp)) instead of
O(N2

p I
2
1 · · · I2Np

), where Iη (η = 1, · · · , Np) is the num-
ber of states for each part HMM.

3.4 Merged-output HMM for score following

A performance model which preserves the voice-part struc-
ture can be obtained by applying the merged-output HMM
to the model described in Section 2. There are options in
what unit of voices to model as a part HMM in general. A
model with more than two voice parts may be used, but the
computational cost rapidly increases with the number of
voice parts. For piano performance, the voice asynchrony
is most evident between both hands, and we consider a
merged-output HMM of two voice parts, which basically
correspond to the left-hand and right-hand parts, in the rest
of this paper.

Each part HMM is constructed in the same way as in Sec-
tion 2, except that a score containing voices in each hand is
now used. However, the IOI output needs to be considered
carefully because it implicitly uses the time information of
the previous state, and the information is not kept in the
state of the merged-output HMM. In another view, the IOI
output is equivalent to consider an additional dimension of
time in the state space for each part HMM [15], and in the
case of two voice parts, the two dimensions of time cannot
be converted to a simple IOI output. In practice, efficient
algorithms such as the Viterbi algorithm cannot simply be
applied to find the optimal state, and some kind of sub-
optimization method must be used. We will come back to
this point in Section 4.

In the case of the performance model, the interaction fac-
tors of the merged-output HMM in Eq. (6) can be inter-
preted as follows. For example, when the performance
by the left hand happens to be behind the right hand, it
is more likely that the left hand will play the delayed note
sooner. This indicates that the current state of the merged-
output HMM may influence the probability of choosing the
transiting part HMM, which can be incorporated in αη′(k).
In real piano performances, the score positions where the
both hands are playing can rarely be far apart, and this can
be described by appropriate values of φ(η

′)
kk′ . Similarly, the

factor ψ(η′)
kk′ (o) can represent the dependence of the out-

put probability on the relative score position between both
hands. Although the interaction factors can be important
to improve the score-following result, we do not make full
use of them in this paper, for simplicity.

4. SCORE-FOLLOWING ALGORITHM

Given the stochastic generative model of performance de-
scribed in the previous sections, the score following can be
done by finding the most probable hidden state sequence
(im)m given observations of performed notes (pm, tm)m.
To improve computational efficiency for real-time work-
ing, we need several refinements of the inference algo-
rithm. First, we need a sub-optimization method for treat-
ing the IOI output as mentioned in Section 3.4. For this,
the most probable arrival time at each state is memorized
and used for calculating the IOI output probability. This
makes the inference algorithm as efficient as the Viterbi
algorithm.

The second point in computational efficiency is the treat-
ment of arbitrary repeats and skips. Although the method
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Table 1. Error rates (%) of the score-following algorithms
with the temporal HMM and HMM without modeling or-
naments. Pieces indicate those described in the text.

Piece Onsets
Temporal

HMM
HMM w/o
ornaments

Couperin 1763 4.71 16.5
Beethoven No.1 17587 3.28 7.83
Beethoven No.2 5861 2.73 5.49

Chopin 16241 10.4 16.2

explained in Section 2.2 can be applied to the present model,
it is not sufficient since the state space is quite large. To
solve the problem, we set φ(η

′)
kk′ = 0 for k′ = (η′, i′, j′)

with far apart i′ and j′. This in effect reduces the con-
cerned state space significantly. Since transition paths re-
quired for large repeats and skips are also eliminated, we
reconnect separate states with a small uniform probability.
Note that the resulting model is no longer a merged-output
HMM, strictly, but they are almost identical in terms of
local transitions, for which the precise description of the
voice-part structure is most important.

Finally, even after the above refinements of the algorithm,
the complexity is large compared to the one-part HMM,
and it can be problematic for a very long score. Gener-
ally, there is no reason to use the merged-output HMM
for a passage where voice asynchrony and ornaments bring
no troubling reorderings of performed notes, which is the
most typical case. In practice, we can model such a pas-
sage within one of the part HMM, say, the first one, and use
the second part HMM, or possibly the third, fourth, etc.,
only for those passages where the voice-part-structured mod-
eling is necessary.

5. EVALUATIONS

5.1 Accuracy of the score-following algorithm

For the purpose of confirming the effectiveness of the score-
following algorithms, the accuracy of the algorithms is eval-
uated with piano performances by several players. First,
four pieces with frequently used ornaments were selected
to test the algorithm with the temporal HMM [15]. The
pieces are the first harpsichord part of Couperin’s Alle-
mande à deux clavecins (the first piece of the ninth ordre
in the second book of pièces de clavecin), the solo piano
part in the second movement of Beethoven’s first piano
concerto, the third movement of Beethoven’s second pi-
ano concerto, and the second movement of Chopin’s sec-
ond piano concerto. Each piece was played by two or three
pianists during practice and recorded in MIDI format.

Table 1 shows the results of score following in terms of
error rates calculated by comparing the estimation result
with the hand-matched result. We see that the algorithm
based on the temporal HMM with ornaments yielded lower
error rates than the one based on the HMM without mod-
eling ornaments. It is confirmed that the explicit modeling
of ornaments is indeed effective. Detailed analysis of the

Table 2. Error rates (%) of the score-following algorithms
by one-part temporal HMM and merging-output HMM.
The used test pieces are explained in the text.

Piece Onsets
Merged-output

HMM
One-part

HMM
1 2532 12.8 22.1
2 1226 11.3 23.3

results is provided in [15].
Next, the score-following algorithm by the merged-output

HMM is evaluated. As test pieces, we used the allegro part
of Chopin’s Fantasie Impromptu (piece 1), which include
a fast passage with 3 against 4 polyrhythms, and an étude
(piece 2) with many sustained trills played in superposition
with chords and arpeggios, which was composed for the
test purpose (part of it is shown in Figure 3(c) and 5(b)).
The pieces were played by two pianists, and the perfor-
mances were recorded in MIDI format during practice.

The results are shown in Table 2 and results for a score-
following algorithm by a one-part temporal HMM is also
shown for comparison. The error rates were calculated by
comparing the estimation result with the hand-matched re-
sult. There were many trill notes in piece 2, and the er-
ror rate was calculated with chords or arpeggios other than
trills since the score positions of trill notes are ambiguous
in nature. The results show that the error rates are reduced
by nearly 50% with the merged-output HMM, compared to
the case with the one-part HMM. As examples are shown
in Figure 5, there was a tendency that the merged-output
HMM estimated score positions more correctly when per-
formed notes were reordered across hands in piece 1, and
when repeated chords or arpeggios were played together
with sustained trills. On the other hand, the time necessary
for following repeats, which we call the following time,
were faster with the one-part HMM. For example, the av-
eraged following time in terms of notes for Fantasie Im-
promptu was 11.8 notes for the merged-output HMM and
7.0 notes for the one-part HMM, where repeats were de-
fined as a backward skip of more than one quater note.
The reason is probably that the model uses richer infor-
mation of simultaneous relations between both hands. The
relatively large error rates were due to frequent mistakes,
repeats, and skips in the prepared performances.

5.2 Computation time

We have confirmed that the score-following algorithm with
the merged-output HMM works in real-time for pieces with
roughly 1000 chords, which include the two test pieces,
in a PC with moderate computation power. However, it
seems hard for pieces with over a few thousands of chords,
which may be a drawback of the algorithm, given that the
algorithm with the one-part HMM can process pieces with
about 10000 chords in real-time [7]. In practice, we can of-
ten reduce computational cost by preparing the voice-part
structure of the score efficiently as we described in the last
paragraph of Section 4. The computational cost mainly
comes from treatment of arbitrary repeats and skips, and
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(a) A passage from Chopin’s Fantasie Impromptu.

(b) A passage with arpeggios and sustained trills.

Figure 5. Examples of score-following results. In each figure, the performed note onsets are written whose horizontal
positions are proportional to actual onset times. Notes that are incorrectly matched by the one-part HMM is indicated
in red color, and the matched results (resp. correct matchings) are indicated with red straight (resp. blue dashed) arrows.
Score-following results for these examples by the merged-output HMM were all correct.

one can also possibly reduce the cost by treating repeats
and skips with a simpler model, and use the merging-output
HMM for local and precise score-position estimation.

6. CONCLUSIONS

In this paper, we discussed the construction of a score-
following algorithm for polyphonic MIDI performance that
can handle reorderings of performed notes due to voice
asynchrony and widely stretched ornaments in polyphony,
particularly focusing on the background model of perfor-
mance which properly and efficiently capture such defor-
mations in performance. We first reviewed the temporal
HMM which is effective for performances with mistakes,
ornaments, arbitrary repeats, and skips, and discussed that
it is difficult to properly describe those deformations solely
with the model. Pointing out the importance of preserv-
ing the voice-part structure for capturing voice asynchrony

and ornaments in polyphony, we proposed a voice-part-
structured model in which outputs from several part HMMs
are merged, each of which being a temporal HMM. Several
refinements of the score-following algorithm to improve
computational efficiency are also explained. We confirmed
the effectiveness of the algorithm by evaluating its accu-
racy.

The key point of the merged-output HMM is that loose
inter-dependency between voice parts can be introduced
while the sequential regularity inside a voice part is pre-
served. Since such fabric of inter-dependencies and se-
quential regularities is common in polyphonic music, the
model can potentially be applied to other kinds of music
information processing in the domain of both composition
and performance. Discovering and extending applications
of the model is an important direction in the future. An
analogous model for audio signals is also attractive.

It is certainly interesting to use the score-following tech-
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nique for automatic accompaniment and other applications.
The voice information would also be important in generat-
ing musically successful expressive accompaniments and
reflecting performer’s musicality into them. We are cur-
rently working on these issues.
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