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Abstract—This paper studies the evolutionary dynamics and
cultural transmission of color styles in painting arts. Creative
cultures, such as visual arts, develop through repeated processes
of knowledge transmission and modification, and characteristics
of these processes can lead to macroscopic evolutionary patterns.
While recent studies have found intriguing trends and dynamic
patterns in the evolution of visual arts, the relationship between
these trends and cultural transmission processes remains poorly
understood. We first analyze the evolutionary dynamics of color
distributions in oil paintings by applying a clustering method.
The results reveal that some of the frequencies of the color style
clusters exhibit synchronous changes that are related to creators’
biases in producing paintings belonging to specific clusters. We
subsequently construct models of cultural evolution to represent
how these biases are transmitted between creators, based on two
hypothetical transmission modes: one guided by influencer-to-
descendant connections and another guided by community-to-
descendant connections. Through statistical inference, we show
that the influencer-guided transmission model better fits the his-
torical data. Furthermore, highly influential creators, as inferred
by the model purely from content data, remarkably align with
those commonly mentioned in the literature on art history.

I. INTRODUCTION

The recent advancement of generative AI [1]–[3] has drawn
attention to the application of image processing in the field
of arts, such as painting. The automatic creation technology
based on machine learning enables the generation of images in
diverse styles. While machine learning relies heavily on a large
accumulation of image data historically created by humans,
the generation of paintings in new creation styles remains a
big challenge [4]. In fact, there is still limited quantitative
and scientific understanding of the process in which humans
develop new creation styles. If we can understand this human’s
creative intelligence, the knowledge can be utilized to realize
automatically generating paintings in a much wider variety of
styles than current systems.

Creative cultures have evolved through repeated processes of
transmission and modification of creative knowledge. Cultural
evolution including such cultural transmission processes has
been studied based on theoretical analogies with biological
evolution, and two factors, environmental and dynamical, in
the evolution process are generally considered to shape evolu-
tionary processes [5]. Environmental factors refer to various
factors that generate selective pressure, and determine the
direction and constraints of evolution. In the case of painting

culture, these include people’s preferences, the supply of
painting materials, and social backgrounds such as economics
and politics. On the other hand, dynamical factors refer to the
effects caused by the processes of knowledge transmission,
mutation, and selection, and are generally relevant for under-
standing the speed and regularities of evolution.

Research on the evolutionary analysis of painting art data,
mainly focusing on Western art, has recently become an active
field [6], thanks to the availability of large-scale digital data
and the development of image analysis techniques including
deep learning. Previous studies have found trends in cer-
tain time periods, in the entropy-complexity features used in
physical system analysis [7] and in the features extracted by
convolutional neural networks (CNNs) [8], [9]. It has also
been shown that the characteristic temporal changes found in
these analyses generally agree with the analysis by art experts,
and the creators who represent the style of each era coincide
with those widely mentioned in art history [7], [8], [10].
Another study suggested that there were significant changes
in the average features of paintings, particularly during the
15th and 16th centuries, and in the late 19th century, from the
analysis of color contrast, which can be associated with the
popularization of oil paints and the increase in individuality in
painting styles [11]. The existence of trends spanning several
centuries and the presence of revolutionary periods with rapid
changes have also been observed in music data, where similar
evolutionary analysis has been conducted [12]–[15]. These
quantitative results have revealed the relationship between the
temporal changes in painting styles and social/environmental
factors. However, the impact of dynamic factors due to cultural
transmission on art evolution still remains poorly understood.

In this study, focusing on the fact that creators usually
produce artworks in several creation styles, we investigate
the impact of cultural transmission of these creative style
distributions on macroscopic evolution of the painting culture.
First, we analyze the color styles of oil paintings by using
a clustering method and show that there are synchronous
changes in the frequencies of certain color style clusters. We
also confirm, through an analysis of the network of clusters
obtained from creators belonging to multiple style clusters, that
the creators’ biased distribution of color styles had significant
influence on the aforementioned synchrony.

To understand the process by which creators select the



distribution of color styles, we construct cultural evolution
models incorporating a transmission process of this distribution
between creators and compare them with a random selection
model. In cultural transmission, various modes of learning
are generally possible, such as learning from a specific in-
fluencer, as in a master-descendant relationship, or learning
from numerous creators or artworks. We here consider two
extreme possibilities: influencer-guided transmission, where
one influencer is mainly involved in the transmission, and
community-guided transmission, where the average features
from a community of creators are transmitted. We formulate
the mathematical models to represent these hypothetical cases.
Through statistical inference based on these models, we show
that the influencer-guided transmission model better explains
the historical data. Furthermore, we validate the potential of
this model, which allows for the estimation of the creator’s
fitness (influence) from image data by unsupervised learning,
by measuring the degree of match between creators with high
estimated fitness and those mentioned in an influential textbook
on art history.

II. CLUSTER ANALYSIS OF COLOR STYLE

A. Materials and method
We used image data of mostly Western art paintings ob-

tained from a public website WikiArt.org. Some meta data are
associated with the obtained image data, including the year
of production, creator’s name, and media (materials). For our
analysis, we extracted artworks with media labeled as “oil”,
resulting in 32 401 artworks. We then extracted color frequency
statistics from each of the images as follows. First, all images
were converted to 100×100 pixels by downsampling (Fig. 1).
Second, we applied color reduction to I = 40 representative
colors, which form a set of equally spaced points in the
cone-shaped HSV color space. Third, the relative frequencies
θn = (θni)

I
i=1 of the representative colors i for each image

n were computed. The tuple (an, tn,θn) of creator an, year
of production tn, and color statistics θn was used for the
following analysis. The years of production in the data ranged
from 1270 to 2022. The number of distinct creators was 1128.

To quantitatively study the evolution of creation styles,
we analyze the temporal changes in the distribution of color
statistics. To deal with the high-dimensional space of the
statistics, we first apply clustering in this space to identify
several concentrated regions, which we call color style clusters.
Specifically, we use for clustering the discrete distribution
mixture model defined as

P (θn) =

K∑
k=1

πkP (θn|θ̄k),

where K is the number of clusters, πk denote the probabilities
of clusters (called the mixture probabilities), and θ̄k is the
mean statistics of cluster k. The k-th component discrete
distribution model P (θn|θ̄k) is defined as

P (θn|θ̄k) =

I∏
i=1

θ̄Lθni

ki ,
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Fig. 1. Processes for analyzing color styles. A: Preprocessing for extracting
color statistics. B: Color style clusters and creator’s style distribution.
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Fig. 2. Evolution of color frequencies. The plotted lines are colored in the
indicating base colors (while line is shaded). Arrows indicate notable trends.

where L is an auxiliary parameter corresponding to a “sample
size” to compute the probability. The clustering algorithm can
be derived based on the expectation-maximization (EM) algo-
rithm. In the E-step, the posterior probability is computed as
P (k|n) ∝ πkP (θn|θ̄k), where L is set as L = 10 t (t denotes
the iteration time) and plays a similar role as the inverse
temperature in the simulated annealing method. In the M-step,
the mixture probability is updated as πk ←

∑
n P (k|n) and the

mean statistics as θ̄ki ←
∑
n P (k|n)θni. Note that we apply

the clustering without using the temporal information tn. After
the convergence of the EM algorithm, we assign each artwork
n to the most probable cluster kn = argmaxk P (k|n), for
subsequent analyses.

To get an overview of the temporal changes of the distribu-
tion of data samples, we also project the color statistics on a
two-dimensional visualization space. For this purpose, we use
the t-SNE method [16] with the Jensen-Shannon divergence
used as the distance measure. This dimensional reduction
process is conducted independently of the clustering and is
used only for visualization.

B. Results

We used images whose year of production is 1450 or later
because there were only a small number of images produced
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Fig. 3. A: Distribution of artworks in the visualization space. Red dots indicate artworks in each period and gray dots represent all the artworks. In the ‘cluster’
panel, artworks are illustrated in the colors of the clusters they belong to (cluster colors are arbitrary). B: Evolution of style cluster frequencies.

before the year. Fig. 2 shows the temporal evolution of the
relative frequencies of colors, where the frequencies were
calculated for each 25-years window. The most frequent colors
have low brightness and low saturation, and bright and high-
saturation colors are generally rare. Several trends can be
observed in this figure, as indicated by arrows. First, from the
15th century to the 17th century, some of the most frequent
colors increased their frequencies in the data, whereas some
relatively frequent bright colors decreased their frequencies.
The frequencies of these colors changed in opposite direc-
tions from the mid-18th century to the 20th century. Second,
several rare bright colors had an overall gradual increase of
the frequency from the 16th century to the 20th century.
Last, the frequencies of vivid colors that were rarely used in
early centuries increased rapidly from the mid-19th century
onwards. While these general trends provide some insights,
the periodwise average frequencies cannot represent variation
and biases of color combinations in individual artworks. The
analysis method based on style clusters solves this problem,
as presented in the results below, thus providing a useful
framework for studying underlying evolutionary processes.

The results of clustering and visualization of color statistics
are shown in Fig. 3, where we used K = 20 clusters to
approximate the distribution. In the visualization space, most
artworks in early centuries are located in the lower half region,
which represents color combinations containing mostly dark
colors. Several important observations can be made in the
evolution of the relative frequencies of color style clusters.
First, we can observe concurrent and transient cluster structure
[13], [17], that is, several clusters are active in each time
period and active clusters gradually change over time. That
there always exist several active clusters reflects the fact that
there are usually multiple art styles and genres in any society.
Second, there are two notable periods where multiple style
clusters arose: from the 15th to the 16th centuries, and from
the mid-19th to the mid-20th centuries. These time periods
coincide with the previous result [11] showing periods with
significant changes in color contrast. Third, we can observe

some style clusters with synchronous rises and declines. For
example, clusters 1 and 3, and clusters 17 and 18 respectively
have synchronous rises in different centuries. These results
indicate the presence of regularities in the evolution of color
styles. In the next section, we analyze this synchrony in more
detail and study its relationships with creators’ behavior.

III. SYNCHRONOUS CHANGES OF STYLE CLUSTER
FREQUENCIES AND CREATORS’ STYLE DISTRIBUTIONS

A. Analysis method

The relative frequencies of style clusters, as depicted in
Fig. 3, can be expressed as a time-dependent mixture prob-
ability πk(t). The local synchrony Skk′(t) between the rises
and declines of clusters k and k′ can be formulated as

Skk′(t) =
1√

CkCk′

dπk(t)

dt

dπk′(t)

dt
,

where Ck =
∫

dt (dπk(t)/dt)2 is a normalization constant.
The (overall) synchrony can be defined as Skk′ =

∫
dt Skk′(t).

In the numerical analysis, the mixture probabilities are ob-
served at discrete time steps, and the differentials and inte-
gration in these equations should be replaced with differences
and summation w.r.t. time. It is noted that since the relative
frequencies must sum up to unity, a rise of a cluster naturally
induces a decline of another, and Skk′ generally has a negative
value if the relative frequencies of clusters k and k′ fluctuate
independently. Therefore, a positive value of Skk′ indicates
synchronous changes between the two clusters.

There are at least two possible factors that cause syn-
chronous changes of cluster frequencies. First, some style
clusters with similar mean color statistics, such as those located
closely in the visualization space in Fig. 3, can represent
separate parts of the same color style. In such a case, a
change in the frequency of a color style can result in coherent
changes in the frequencies of the relevant clusters. Second, the
behavior of creators who usually produce artworks in several
creation styles can induce the synchrony between clusters
that do not necessarily represent similar color statistics. For
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Fig. 4. Pairwise synchrony Skk′ between clusters.

example, there are many creators who produced both portraits
and landscapes, each of which are usually painted in different
color combinations, and a change of artistic taste shared in a
community can result in a synchronous change of color styles
of both genres. To study this aspect, we calculate the color
style distribution πa = (πak)Kk=1 of creator a, by counting the
number of artworks by the creator belonging to cluster k and
normalize the frequencies.

In both cases, some relations, feature similarity or associ-
ation through creators, induce connections between clusters
that lead to synchronous changes in the cluster frequencies. As
in the case of association through creators, such connections
can temporally change in general. These connections can be
expressed as a weighted network A(t) = {Akk′(t)} of clus-
ters, where edges Akk′(t) represent the degree of connection
between clusters k and k′ at time t. The contribution of
a network on the synchrony can be quantified as S(A) =∫

dt
∑
kk′ Akk′(t)Skk′(t). To compare different networks, we

impose conditions that self-connections are zero (Akk(t) = 0)
and that a normalization condition

∑
kk′ Akk′(t) = 1 holds.

To examine possible factors of the synchrony of style cluster
frequencies, we consider the following four cluster networks.
(i) Uniform network: Akk′ = 1/(K−1) (k 6= k′). This is a null
hypothesis. (ii) Feature similarity network: Akk′ ∝

∑
i θ̄kiθ̄k′i.

This represents the cosine similarity between the mean statis-
tics of the clusters. (iii) Creator-mediated association network:
Akk′(t) ∝

∑
aD(t, a)πak′πak′ , where D(t, a) = 1 if creator

a is relevant at time t and 0 otherwise. This represents the
co-occurrence of style clusters in the artworks produced by
individual creators. (iv) Frequency-based association network:
Akk′(t) ∝ πk(t)πk′(t). This represents a hypothetical situation
where creators choose the style clusters of their artworks by
randomly sampling from the cluster frequencies of the time,
and consequently their style distributions πak coincide with
πk(t) of time t when creators a are active. We compare these
networks in terms of the derived synchrony S(A); if a network
Akk′(t) is relevant to the macroscopic evolution of the cluster
frequencies, then S(A) is expected to be large.

B. Results

Fig. 4 shows the pairwise synchrony Skk′ between style
clusters, where we have used discrete time steps of 25-year
width. We see some off-diagonal elements with positive values,

TABLE I
DERIVED SYNCHRONIES FOR DIFFERENT CLUSTER NETWORKS.

Network A Derived synchrony S(A)

Uniform −0.042
Feature similarity −0.007

Creator-mediated association 0.033
Frequency-based association −0.034

1750–1850 1850–1950 1950–2050

1450–1550 1550–1650 1650–1750

Fig. 5. Creator-mediated cluster networks in different centuries. The nodes
are located similarly as the cluster centers in the visualization space in Fig. 3.

while a majority of the elements have negative values. Table I
lists the derived synchronies for the four cluster networks. Only
the creator-mediated association network yielded a positive
synchrony, indicating that the creators’ style distributions had
an impact on the dynamics of style cluster frequencies and
induced the synchronous changes. The result also suggests
that the feature similarity of clusters also induced the syn-
chrony. On the other hand, the small derived synchrony by
the frequency-based network indicates that creators’ style
distributions deviated from the random selection case, in a
biased and coherent (i.e. shared by many creators of the same
time) way.

The creator-mediated cluster networks visualized in Fig. 5
clearly show that the association of clusters changed consid-
erably over centuries. The connection weights between some
clusters are much larger than others, and we can observe some
edges between distant clusters with distinct styles also have
large weights. Overall, these results show that creators’ color
style distributions are biased in a coherent way that cannot be
simply explained by the feature similarity or random selection
of style clusters, and as they vary over time these biased style
distributions markedly affected the macroscopic evolution of
color styles in painting arts.

IV. CULTURAL TRANSMISSION OF COLOR STYLE
DISTRIBUTIONS

A. Cultural evolution models for creators’ style distributions

The biased and coherent color style distributions of creators
discussed in the previous section pose an important question:
How did the creators’ style distributions determine? While
certain social factors such as the demand from the church or
patrons are conceivable, we here focus on a simple possibility
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of cultural transmission. Since complex knowledge about the
art of paining is usually learned from other creators or their
artworks, it is possible that the color style distribution is
transmitted in this learning process.

We construct two models to examine what particular mode
of cultural transmission is plausible to explain the data. In
cultural phenomena, unlike in genetic evolution, the number of
cultural parents is not limited to one (asexual) or two (sexual),
and transmission from a varying number of cultural parents
are possible. We thus consider two hypothetical situations that
represent extreme cases within a broad range of possibilities. In
the first influencer-guided transmission model, we suppose that
a creator learns his/her creation style mainly from a specific
influencer’s artworks, as in a master-descendant relationship.
In the second community-guided transmission model, we sup-
pose that a creator learns the creation style from numerous
creators’ artworks belonging to some stylistic community. In
the following, we mathematically formulate these models.

We formulate the cultural evolution models based on a
stochastic description of the transmission-mutation-selection
process [5]. This is a formulation similar to the models of
biological evolution used in population genetics [18], except
that the potential of a past creator to produce cultural offspring
can in principle continue for long after his/her death. We
denote by tsa the year that creator a started creation, which
is defined as the earliest year of the creator’s artworks in
the data. Let π̃a = (π̃ak)Kk=1 denote the frequency counts
of style clusters in artworks of creator a. By normalizing
these frequencies, we obtain the style distribution πa. We also
denote by π<ta the style distribution obtained from the artworks
of creator a produced before year t. Our cultural evolution
models are formulated as explicit realizations of the probability
distribution P (π̃a) for all creators a.

B. Influencer-guided transmission model

In the influencer-guided transmission model, each learner
creator selects an influencer creator among previous creators
and learns the influencer’s style distribution. This model can
be formulated as

P (π̃a) =
∑

a′:ts
a′<t

s
a

P
tsa
sel(a

′)Pdis(π̃a|πa′→a),

where the summation is taken over all potential creators
a′ with tsa′ < tsa, P t

s
a

sel(a
′) is the selection probability of

the influencer a′ of creator a, πa′→a represents the style
distribution transmitted from a′ to a, and the last factor is
given as a discrete probability distribution

Pdis(π̃a|πa′→a) =
∏
k

[π(a′→a)k]π̃ak . (1)

We incorporate two biases in the selection probability to
represent potential tendencies of learner creators, which are
similar to those used for modeling citation dynamics of
scientific papers [19]. The first is the recency bias, which
represents the creators’ tendency to more likely choose a
reference influencer that lived more recently. This bias can be

represented by a weighting factor e−(t
s
a−t

s
a′ )/τc , where the time

constant τc represents the time scale for the bias. The second
bias is the (intrinsic) fitness of an influencer, which represents
a time-independent likelihood of being learned by successors
due to possible factors such as prestige and visibility. To
represent this bias, we introduce a fitness parameter va′ for
each creator. We also require that a potential influencer a′ must
have produced at least Nbound artworks (specifically, we set
Nbound = 7). The selection probability can then be given as

P
tsa
sel(a

′) ∝ I(tsa′ < tsa) I(N<tsa
a′ ≥ Nbound) e−(t

s
a−t

s
a′ )/τc+va′ ,

(2)
where I(C) = 1 if condition C is true and otherwise I(C) = 0,
and N<t

a′ denotes the number of artworks produced by creator
a′ before year t.

The transmitted style distribution represents the influencer’s
style distribution with modifications including mutations. Here,
we include the influence of creators other than the influencer
since it is certainly possible that a learner creator observes
many others’ artworks and is influenced by the average style
distribution of the time. This situation can be formulated as

πa′→a = (1− η − ε)π<t
s
a

a′ + ηπ<t
s
a + ε1/K,

where π<t
s
a represents the average style distribution at (just

before) time tsa, 1/K = (1/K, . . . , 1/K) denotes a uniform
distribution, and η and ε are nonnegative constants. The first,
second, and third terms on the right-hand side represent
the transmission from the influencer, transmission from the
average style distribution of the time, and random mutation,
respectively. The average style distribution π<t also incorpo-
rates the recency effect and is defined as

π<tk ∝
∑
n:tn<t

I(tn < t)I(kn = k) e−(t−tn)/τp , (3)

where the summation is taken over all artworks n produced
before t, kn denotes the cluster assigned to n, and τp denotes
the time constant for artworks. The parameters η and ε repre-
sent the strength of the second and third terms and are called
the oblique transmission coefficient and the random mutation
rate, respectively. It is noted that the time-decaying factors
in Eqs. (2) and (3) reduce the influence of past creators and
artworks as time proceeds. Additionally, the restrictions on
time in these equations ensure the causal constraint that future
information is not used in the definition of probability P (π̃a).

C. Community-guided transmission model

In the community-guided transmission model, we consider
that a learner creator first analyzes previous artworks and finds
communities of creators sharing similar style distributions. The
learner creator then selects a community and learns the mean
style distribution of the community. This model is described
as

P (π̃a) =

C∑
c=1

ψ
<tsa
c Pdis(π̃a|πc→a), (4)

where c indexes communities of creators, C is the number
of communities, ψ<tc represents the selection probability of
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communities at time t, and πc→a represents the style dis-
tribution transmitted from community c to creator a. The
discrete probability distribution Pdis(π̃a|πc→a) is the same
as in Eq. (1). The creator communities are formalized as a
dynamic mixture model with the following log-likelihood:

L(t) =
∑

a:tsa<t,

N<t
a ≥Nbound

e−(t−t
s
a)/τc ln

[∑
c

ψ<tc Pdis(π̃
<t
a |π<tc )

]
,

(5)
where τc is the creator time constant, ψ<tc is the mixture prob-
ability, and π<tc is the mean style distribution of community c.
Assuming that how creators analyze the community structure is
time-dependent and recent creators are given more attention in
this process, the time-decaying factor e−(t−t

s
a)/τc is introduced

to weigh the creators’ contributions on the likelihood. We use
in Eq. (4) the parameter values of ψ<tc and π<tc that maximize
Eq. (5). See Sec. IV-D for the inference method.

The transmitted style distribution in Eq. (4) is formulated
similarly as in the influencer-guided transmission model: we
suppose that the mean style distribution of the selected com-
munity has the dominant influence, but the mean average style
distribution of the time also has some influence and there is
a small chance of random mutation. This situation can be
formalized as

πc→a = (1− η − ε)π<t
s
a

c + ηπ<t
s
a + ε1/K,

where η represents the oblique transmission coefficient also in
this model.

D. Inference method

The main purpose of the evolution models presented in the
previous sections is to compare the two hypotheses on the
cultural transmission process. Both models are formulated as
realizations of the same probability distribution P (π̃a), and we
can compare them by their total log-likelihoods normalized by
the total number of artworks

Ltot =

(∑
a

lnP (π̃a)

)/(∑
a,k

π̃ak

)
,

or the exponentiated quantities κ = exp(Ltot) called the
perplexity. The perplexity can be interpreted as the effective
number of style clusters to choose. The smaller this quantity is,
the more predictive a model is. The log-likelihood value Ltot

depends on the model parameters in both evolution models.
Following the maximum likelihood principle, we estimate the
model parameters to maximize Ltot, that is, we compare the
two models in their optimal conditions. Since the values of
the mutation rate ε and artwork time constant τp did not
affect the likelihood so much, as they are effectively smoothing
constants, we fixed them as ε = 10−6 and τp = 20 yrs. In the
following, due to the lack of space, we briefly explain specific
methods for the inference of model parameters.

In the influencer-guided model, the model parameters to be
estimated are {va}, τc, and η. We use an iterative method
for optimizing these parameters; when one parameter (set) is

TABLE II
PERPLEXITIES AND ESTIMATED PARAMETERS OF THE EVOLUTION

MODELS. RESULT FOR THE MODEL USED FOR ANALYZING CREATOR
FITNESS (SEE TEXT) IS ALSO SHOWN AT THE BOTTOM.

Model Perplexity τc (yrs) η

Random 19.1 NA NA
Influencer-guided (optimal) 15.6 117 0.37

Community-guided (C = 10) 16.4 160 0.38
Community-guided (C = 20) 16.2 110 0.52
Community-guided (C = 30) 16.1 220 0.58

Influencer-guided (for analysis) 16.2 50 0.1

optimized the other parameters are fixed. For creators’ fitness
va, we use the expectation-maximization (EM) algorithm with
the influencer variable a′ treated as a latent variable for each
learner creator a, which can be derived in a manner similar to
the Gaussian mixture model. For parameters τc and η, we use
the grid search method.

In the community-guided model, the model parameters to be
estimated are {ψ<tc ,π<tc }, τc, and η. We again use an iterative
method for optimizing these parameters, and the parameters τc
and η are optimized by grid search. We use the EM algorithm
for estimating ψ<tc and π<tc with the likelihood function in
Eq. (5). To ensure the temporal consistency of the community
estimation, we first perform community estimated on a coarse
time scale of 25-years width and use this result to initialize
the parameters ψ<tc and π<tc for individual years.

E. Results

Table II shows the model comparison result. As a reference,
we also compared the random model where a creator generates
artworks with cluster frequencies π̃a according to the temporal
average style distribution π<t

s
a : P (π̃a) = Pdis(π̃a|π<t

s
a). The

creator time constant τc was estimated in the resolution of ap-
prox. 1 year for the influencer-guided model, and 10 years for
the community-guided model, due to the large computational
cost of the latter model. We tested C = 10, 20, and 30 for the
community-guided model. Compared to the random model,
the influencer-guided and community-guided models both had
significantly lower perplexities, indicating a clear effect of
cultural transmission. We see that the number of communities
C does not have much impact on the perplexity, while large
values of the oblique transmission coefficient were estimated
for C = 20 and 30, suggesting that these models overfitted
the community structure. By comparison, the influencer-guided
model had a smaller perplexity, which shows that influencer-
guided transmission better fits our data. On the other hand,
the oblique transmission coefficient was also relatively large
for this model, implying that the color style distribution is
learned not only from one influencer but also from others.
The estimated value τc = 117 yrs suggests that the influence
of past creators sustains for a relatively long time.

An interesting possibility of the influencer-guided model
is that it can estimate the fitness (influence) of creators in
an unsupervised manner. To examine the model’s potential,
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Fig. 6. Comparison of F-score measuring the accuracy of estimating
influential creators in comparison with Gombrich’s book [20].

we compared the list of creators with high estimated fitness
with the list of creators appearing in Gombrich’s classical
textbook on art history [20]. Among the creators listed in
[20], we removed a few who did not have major activities
of painting and obtained a list of 101 creators. Using the
model estimation, we made lists of varying sizes containing
creators with the highest fitness, and we calculated the F-score
to measure how much the results align with the Gombrich’s
list. We also conducted a similar calculation for a randomly
sorted list of creators. The result in Fig. 6 shows that the F-
score curve by the influencer-guided model with maximum
likelihood parameters had significantly high values than that
for the random list. While this result is already remarkable,
we found that with alternative parameterization with a shorter
time constant τc = 50 yrs and a smaller oblique transmission
constant η = 0.1, the F-score curve had even higher values
(Fig. 6), even though the perplexity becomes higher (Table II).
We discuss this mismatch between the optimized models for
the likelihood measure and the accuracy of estimating “well-
known” creators in the discussion section.

The 25 creators with the highest estimated fitness by the
influencer-guided model with τc = 50 and η = 0.1 are shown
in Table III. We can see that the list includes creators active in
various centuries. Importantly, the list contains creators with a
relatively small number of artworks in the dataset, including
such well-known creators as S. de Vlieger, R. Lichtenstein,
and H. Hoffman. This result shows that the model predicts the
fitness not merely from the number of artworks in the data,
which although highly correlates with the creator’s prestige.
That this result was obtained purely from the image data and
the meta data about the year of production for ensuring causal
constraints demonstrates the potential of the present model for
quantitatively and objectively analyzing painting art data and
cultural evolution.

V. CONCLUSIONS AND DISCUSSION

We have analyzed the evolution of color styles in painting
arts using statistical machine learning and evolutionary model-
ing methods. By analyzing the dynamics of color style clusters,
we have found synchronous changes in the cluster frequencies.
We also found that creators’ color style distributions are biased
in a coherent way and this property is a major factor of

TABLE III
HIGHEST FITNESS CREATORS ESTIMATED BY THE INFLUENCER-GUIDED

MODEL (τc = 50 YRS, η = 0.1). NAMES IN BOLD FONTS INDICATE THOSE
APPEARING IN GOMBRICH’S BOOK [20].

Fitness eva Creator a Year tsa No. of works

1.81 T. van Rysselberghe 1880 125
1.77 I. Aivazovsky 1835 238
1.75 S. de Vlieger 1629 29
1.70 Titian 1503 200
1.63 C. Lorrain 1630 62
1.62 C. Hernandez 2001 17
1.60 D. Teniers II 1633 54
1.58 G. Bellini 1455 56
1.57 M. Hafftka 1986 8
1.54 P.-A. Renoir 1858 913
1.53 H. Hofmann 1902 16
1.48 F. Boucher 1734 51
1.45 K. Malevich 1904 113
1.44 P. Picasso 1893 499
1.44 D. Velazquez 1616 127
1.43 T. Gainsborough 1745 125
1.43 J. van Eyck 1426 63
1.42 R. Lichtenstein 1961 26
1.42 C. Monet 1861 191
1.41 H. Matisse 1890 188
1.40 V. van Gogh 1881 747
1.38 C. Corot 1825 409
1.38 P. Gauguin 1873 460
1.38 A. Altdorfer 1507 25
1.37 R. Bujnowski 2001 9

this macroscopic phenomenon. We then constructed cultural
evolution models incorporating transmission and selection pro-
cesses of creators’ color style distributions and found that the
influencer-guided transmission model better fits the data than
the community-guided transmission model. We also showed
that the model can estimate the creators’ fitness by unsuper-
vised learning and automatically discover important figures
in the history of painting art only from the image data. All
together, these results indicate that in the cultural transmission
of knowledge about painting styles, not only the average color
combinations but also the distribution of different sets of color
combinations is transmitted from creators to creators, and this
microscopic process of individual creators can lead to the
macroscopic patterns in the evolution of painting style.

It should be emphasized that the present models represent
a simplified description of the real evolutionary process. For
example, the model can be extended to include more than one
cultural parent, or dynamic changes in the parameters such as
the creator time constant and the oblique transmission coeffi-
cient. The mismatch of the preferred parameterizations by the
maximum likelihood estimation and the optimal accuracy of
reproducing the human expert’s account, found in Sec. IV-E,
may be an indication of such incompleteness of the current
model. It may also be possible that the present model, which
“analyzes” a much larger amount of data than a human can,
can find objectively correct results that humans may not find
easily. Therefore, future work should study more elaborated
models and examine how these models will (or will not) alter
the results, and additionally, conduct a benchmark test, for

7



example, using synthetic data, to quantitatively measure the
ability of the present model. It is also important to examine
the influence of the number and values of representative colors,
which were somewhat arbitrarily chosen in this study.

Our result has prospective applications for enhancing the
generative AI technology. Using the evolution model with
influencer-guided transmission, we can estimate the transmis-
sion paths of knowledge about creation style. In scientometrics,
for example, such knowledge reference data (i.e. citation data)
are used as fruitful sources for studying the dynamics of
creative activities including the quantification of the scientific
contribution [21], the formation of communities [22], and the
nature of creativity [23], [24]. Since complete knowledge trans-
mission paths are rarely provided in self-reports or historians’
accounts especially in art fields [25], a data-driven method
would provide useful complemental data for revealing the
mechanisms by which new creation styles are developed. The
found mechanisms can be integrated with machine learning
techniques to realize “creative” generative AIs, for example,
using the framework of evolutionary computation.

Finally, the present framework of applying a model integrat-
ing a probabilistic generative process and cultural evolution
process can be applied to a wide domain of data. While we
focused on the color style in this study, there are other impor-
tant stylistic features such as spatial composition, brushstroke
pattern, and painted objects. We can apply DNNs for analyzing
these various features [8], [9] and with a modification of the
data generation process, we can conduct a similar analysis
on more general features. Other possible cultural domains
of application include music [26]–[28] and literary art [29],
and culinary art [30], where cultural transmission of complex
knowledge is considered equally important to understand the
creative aspect of human intelligence.
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