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Abstract—This paper describes end-to-end automatic drum
transcription for directly estimating a drum score from an audio
signal of popular music using non-aligned paired data. We aim to
convert a sequence of frame-level acoustic features into a sequence
of tatum-level score fragments (three-dimensional multi-hot vec-
tors) representing the presence or absence of the onsets of the bass
and snare drums and the hi-hats. The main challenge of this task
lies in estimating the correct number of inactive tatums having
no onset between active tatums. One may use the connectionist
temporal classification (CTC) for end-to-end training of a deep
neural network (DNN) that infers a frame-level state sequence
(alignment path) including the special “blank” states representing
the tatum boundaries. At run-time, a drum score is obtained by
annexing repeated states and removing all blank states from the
most likely frame-level state sequence. This approach, however,
tends to yield a shortened drum score in which repeated inactive
tatums are annexed mistakenly because the blank state (tatum
boundary) cannot be distinguished acoustically from the inactive
state (onset absence) at the frame level. In this paper, we propose a
sophisticated version of the CTC with constant tempo constraint,
CTC2 in short, that encourages each tatum to be aligned with
almost the same number of frames. Although the loss function can
be computed efficiently as in the basic CTC, the backpropagation
over the huge computation graph made through the forward al-
gorithm is computationally prohibitive. To solve this problem, we
propose to perform the backpropagation with only an alignment
path stochastically drawn with Gibbs sampling. The experiment
showed that the proposed method worked well as expected.

I. INTRODUCTION

Automatic drum transcription (ADT) is a fundamental task
that aims to estimate a drum score (MusicXML format) from a
music signal. Although ADT plays a key role in computational
music understanding, it has been tackled only partially; most
studies aim to estimate a piano roll (MIDI format) by detecting
the onset times of drums in seconds [1], [2]. To estimate a drum
score, for example, one may estimate the beat and downbeat
times in advance [3], [4] and then perform quantized onset
detection [5]. Instead, one may take a more sophisticated ap-
proach in the same way as the state-of-the-art automatic piano
transcription [6] based on the combination of audio-to-MIDI
transcription [7] and MIDI-to-score transcription (rhythm tran-
scription) [8]. Such a cascading approach, however, suffers
from the error propagation problem.

Inspired by the great success of end-to-end automatic speech
recognition (ASR), end-to-end automatic music transcription
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Fig. 1. The comparison of the basic CTC and the proposed CTC with constant
tempo constraint (CTC2). The repeated inactive tatums having no drum onsets
can be estimated correctly by encouraging the frames to be segmented into
the tatums with almost the same length.

(AMT) has recently been investigated [9]–[13]. This approach
can circumvent the error propagation problem and make ef-
fective use of non-aligned pairs of music signals and the cor-
responding scores as training data. Considering the monotonic
nature of the audio-to-score mapping, we focus on the con-
nectionist temporal classification (CTC) [14] (cf. [9]) because
it is expected to work stably with a limited amount of training
data, compared with the encoder-decoder model (cf. [10]) and
that with the attention mechanism [15] (cf. [11]–[13]).

End-to-end AMT methods can also be characterized by their
score representations: how to define symbols constituting the
output sequence. The representation affects the difficulty unique
to AMT in estimating the temporal information about note
values (quantized durations) and metrical structures. The basic
way is to convert a sequence of frame-level acoustic features
into a sequence of notation-level score components (e.g., notes
and bars) [12]. The note values (temporal attribute), however,
are considerably harder to estimate than the note pitches (in-
stantaneous attribute) with the basic input-output alignment
mechanism. Another way is to estimate a sequence of tatum-
level score fragments [11], where the tatum is a basic time unit
on the score at the sub-beat level (typically at the sixteenth-
note level). Instead of directly estimating the note values, this
approach aims to estimate the presence or absence of the note
onsets (instantaneous attribute) at the tatum level.



In this paper we tackle CTC-based ADT that aims to esti-
mate a sequence of tatum-level score fragments (Fig. 1). Each
fragment (tatum) is represented as a three-dimensional multi-
hot vector indicating the presence or absence of the onsets of
the bass and snare drums and the hi-hats (eight states in total).
The main challenge unique to this task is to estimate the correct
number of inactive tatums (a state corresponding to the all-zero
vector) between active tatums (the other seven states). If the
basic CTC is used for end-to-end training, the state of each
tatum of the ground-truth sequence is associated with frames
of the input sequence whose acoustic features are particularly
relevant to the state through forced alignment. Such frames are
typically only at the beginning of the tatum; the special blank
state (denoted by “_”) is associated with the other acoustically
irrelevant frames. At run-time, however, successive inactive
tatums are annexed mistakenly because the blank state (tatum
boundary) and the inactive state (onset absence) are hard to
distinguish acoustically at the frame level.

To solve this problem, we propose a sophisticated version
of the CTC with constant tempo constraint, CTC2 in short,
based on the reasonable assumption that the tempo is usually
kept constant throughout the song in popular music (Fig. 1).
In the basic CTC, the frame-to-tatum alignment is obtained
through unconstrained time stretch because only the order of
output symbols (states) matters and their durations are ignored,
as in the inference of the latent state sequence of the hidden
Markov model (HMM). Inspired by the hidden semi-Markov
model (HSMM) with explicit duration modeling [16], we in-
stead encourage the tatum boundaries (transitions between the
main eight states and the blank state) to occur regularly with a
constant interval, where adjacent tatums favor to have the same
duration [3], [17]. This makes successive inactive frames split
into an appropriate number of successive inactive tatums at the
frames associated with the blank state.

We also propose an efficient training method that works with
the CTC and its variants. The objective function of the CTC2 to
be maximized is given by the sum of the posterior probabilities
of all possible alignment paths as in the CTC. Although it
can thus be computed efficiently with dynamic programming
(forward algorithm) in the analogy of the HMM to the HSMM,
the backpropagation over the huge computation graph is com-
putationally prohibitive. We thus perform the backpropagation
along only an alignment path stochastically drawn according to
the posterior probability with Gibbs sampling. Technically, we
run the forward filtering-backward sampling in the evaluation
mode to draw a path and then make a compact computation
graph along the path in the training mode.

II. RELATED WORK

This section reviews related work on ADT and that on end-
to-end AMT.

A. Automatic Drum Transcription

Deep neural networks (DNNs) have intensively been used
for ADT [1], [2], [5], [18]–[22]. In general, the spectrogram
of an audio signal is used as input, and the annotated drum
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Fig. 2. The proposed ADT method based on the CTC2.

onset times are used as training data. For feature extraction,
convolutional neural networks (CNNs) have commonly been
used. Regularization based on prior information about drum
scores [5] and refined network architectures [23] have also
been attempted, resulting in improved performance of tran-
scription. For converting DNN outputs into musical scores, we
use beat information for quantization, and it has been reported
that using temporal convolutional networks (TCNs) [24], [25]
for beat tracking is effective. However, one problem with these
methods is that they require as training data a sufficient amount
of music spectrograms with precise annotations of drum onset
times. To address this issue, the use of synthetic datasets [26],
data augmentation [19], and unsupervised learning [27] have
been proposed. Nevertheless, these approaches still face chal-
lenges in terms of robustness against real performances and
the ability to handle variations in drum sounds.

B. End-to-End Automatic Music Transcription

For end-to-end AMT that aims to directly estimate a musi-
cal score (a sequence of musical notations on the score), the
attention mechanism [12] and the CTC [28], [29] have been
investigated. In singing transcription based on the attention
mechanism, the tempo consistency was taken into account [12],
where the frame-to-tatum alignment is encouraged to be mono-
tonic and regular by imposing a regularization term on the
attention matrix. Such regularization, however, was found to
prevent the initial progress of the training.

III. PROPOSED METHOD

This section describes the audio-to-score ADT method based
on the CTC2-based end-to-end training (Fig. 2).

A. Problem Specification

Our goal is to estimate a drum score from a sequence of the
stereo power spectra of a target musical piece, X ≜ {xt}Tt=1

(xt ∈ R2F ), where F is the number of frequency bins and T
is the number of frames. We aim to estimate the presence or
absence of the onsets of I drum instruments at the tatum level.
In this study, we focus on the three common drum instruments:
bass drum (BD), snare drum (SD), and hi-hats (HH) (I = 3).
Let yn ∈ {1, . . . ,K} be the state of tatum n, which is defined
as yn = 1+20⟨BD⟩n+21⟨SD⟩n+22⟨HH⟩n, where K = 2I = 8,
and ⟨DR⟩n is a binary value indicating the presence or absence
of an onset of DR at the tatum. Let Y ≜ {yn}Nn=1, where N is
the number of tatums. The tatum is defined as the one-fourth
of the beat, i.e., the tatum and beat correspond to the durations
of the sixteenth and quarter notes, respectively.



B. Training and Inference

We describe the basic flow of end-to-end ADT. In addition
to the main states indexed by {1, 2, . . . ,K} (Section III-A),
we introduce the special blank state indexed by 0. Let π ≜
{πt}Tt=1 be a redundant state sequence, where πt ∈ {0, . . . ,K}
represents the state of frame t. We use a DNN with parameters
θ that outputs the posterior probabilities of the (K +1) states
at the frame level, denoted by ϕ ≜ {ϕk,t}K,T

k=0,t=1, where ϕk,t

represents the probability of state k at frame t.
1) Training: Given a non-aligned pair of X and Y as train-

ing data, we train the DNN. Let B(π) be a one-to-one reducer
that returns Y by annexing repeated states and removing all
blank states from π, e.g., B(01110112) = B(01100122) =
112. Let B−1(Y) be a one-to-many expander that returns a
set of all possible redundant state sequences that reduce to
Y, e.g., B−1(112) = {01110112, 1100122, . . . }. The DNN
parameters θ are optimized such that the following posterior
probability is maximized:

L = log p(Y|X, θ)

= log
∑

π∈B−1(Y)

p(π|X, θ). (1)

2) Inference: Given X, we estimate Y using a trained DNN
with the parameters θ. The redundant state sequence π is
obtained by selecting the most likely state at each frame:

πt = argmax
k

ϕk,t. (2)

The final output Y is given by Y = B(π).

C. Conventional CTC

As a baseline, we briefly explain the training method based
on the basic CTC. The posterior probability of an alignment
path π in (1) is given by the product of the frame-wise pos-
terior probabilities of the states as follows:

p(π|X, θ) =

T∏
t=1

ϕπt,t. (3)

The loss function L or p(Y|X, θ) in (1) can be computed
efficiently with a dynamic programming technique called the
forward algorithm as in the HMM. Let Y′ ≜ {y′s}Ss=0 be an
expanded state sequence obtained by inserting the N−1 blank
states between the N states of Y and pushing the blank states
to the front and back of Y, i.e., S = 2N+1, y′2n−1 = yn, and
y′s = y⌊ s

2+1⌋. Let αt(s) be the forward probability obtained by
accumulating the posterior probabilities of all possible paths
that align xt with y′s:

αt(s) =
∑

π1:t∈B−1(y1:⌊ s
2
⌋)

t∏
τ=1

ϕπτ ,τ , (4)

where a1:t ≜ {a1, . . . , at}. Since an alignment path π is valid
if the last frame xT is aligned with the last non-blank symbol
y′S−1 = yn or the last blank symbol y′S , we have

p(Y|X, θ) = αT (S − 1) + αT (S). (5)
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Fig. 3. Examples of the alignment path π estimated by a) the CTC- and b)
CTC2-based training methods.

The forward probabilities can be computed recursively with
the time complexity of O(TS). First, we set the initial values:

α1(1) = ϕ0,1, (6)
α1(2) = ϕy1,1, (7)
α1(s) = 0,∀s > 2. (8)

We then use the following recursive formulas:

αt(s) =


if y′s = blank or y′s−2

[αt−1(s) + αt−1(s− 1)]ϕπs,t,
else
[αt−1(s) + αt−1(s−1) + αt−1(s−2)]ϕπs,t.

(9)

In the inference stage, however, the optimal alignment path
π estimated by (2) tends to deviate considerably from the
diagonal line on the alignment map between the input sequence
X and the estimated sequence Y′ (Fig. 3-a). The durations of
the N symbols in Y = B(π) thus have a large variation,
meaning that the tempo is allowed to frequently change at the
tatum level in a musically-unnatural manner.

D. Training with Proposed CTC2
We then explain the training method based on the proposed

CTC2 for explicit duration modeling with the constant tempo
constraint (Fig. 4). Let D = {dn}Nn=1 (Dmin ≤ dn ≤ Dmax)
denote the durations of the N symbols of Y, where Dmin

and Dmax are the minimum and maximum durations to be
considered. When the frame shift is 10 [ms], the local tempo at
tatum n is 1500/dn [bpm]. Let B(π) be redefined as a one-to-
one reducer that returns a pair (Y,D), e.g., B(01110112) =
(112, 421), B(01100122) = (112, 412). Let B−1(Y,D) be
redefined as a one-to-many expander that returns all possi-
ble sequences that reduce to (Y,D), e.g., B−1(112, 412) =
{01110112, 1100122, . . . }. Note that even if both Y and D
are given, B−1(Y) may return multiple paths.

The posterior probability of Y in (1) is given by

p(Y|X, θ) =
∑
D

p(Y|X, θ,D)p(D), (10)
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Fig. 4. The forward algorithm in the proposed CTC2-based training with
explicit duration modeling.

where p(Y|X, θ,D) is the posterior probability of Y condi-
tioned by D and p(D) is the generative probability of D given
by a Markov model as follows:

p(D) = p(d1)

N∏
n=2

p(dn|dn−1), (11)

p(d1) ∝ 1, (12)

p(dn|dn−1) ∝ exp

(
−λ

∣∣∣∣ dn
dn−1

− 1

∣∣∣∣). (13)

The loss function L or p(Y|X, θ) in (1) can be computed
efficiently as in the HSMM. Let αt(s, d, c) be the forward
probability obtained by accumulating the posterior probabili-
ties of all possible paths that align xt with y′s:

αt(s, d, c) =
∑

π1:t∈B−1(y1:⌊ s
2
⌋,d1:⌊ s

2
⌋)

t∏
τ=1

ϕπτ ,τ · p(d1:⌊ s
2 ⌋),

(14)

p(d1:⌊ s
2 ⌋) = p(d1)

⌊ s
2 ⌋∏

n=2

p(dn|dn−1), (15)

where d represents the duration of the current main state y⌊ s
2 ⌋

and c is a counter variable that is set to d when a new state
starts and is then decremented until the state ends. We have

p(Y|X, θ) =

S∑
s=S−1

Dmax∑
d=Dmin

d∑
c=1

αT (s, d, c). (16)

Note that if λ = 0 in (13), i.e., the durations of the output
symbols are allowed to take any values with the same proba-
bility, i.e., p(D) = 1, the CTC2 reduces to the CTC, i.e., (14)
and (16) reduce to (4) and (5), respectively.

The forward probabilities can be computed recursively with
the time complexity of O(TSD2), where D ≜ Dmax−Dmin+
1. First, we set the initial values:

α1(1, d, c) = ϕ0,1,∀d, c, (17)
α1(2, d, c) = ϕy1,1,∀d, c, (18)
α1(s, d, c) = 0,∀s > 2. (19)

We then use the following recursive formulas:

αt(s, d, c) =



if d = c
if y′s = blank
0,

else if y′s = y′s−2∑
d′ αt−1(s− 1, d′, 1) · ϕy′

s,t
· p(d|d′),

else∑
d′ ᾱt(s, d, c) · ϕy′

s,t
· p(d|d′),

else if d > c
if y′s = blank

¯̄αt(s, d, c) · ϕy′
s,t
,

else
αt−1(s, d

′, c+ 1) · ϕy′
s,t
,

else
0,

(20)

ᾱt(s, d, c) = αt−1(s− 1, d, 1) + αt−1(s− 2, d, 1), (21)
¯̄αt(s, d, c) = αt−1(s, d, c+ 1) + αt−1(s− 1, d, c+ 1). (22)

In the inference stage, the optimal alignment path π es-
timated by (2) tends to roughly follow the diagonal line on
the alignment map between the input sequence X and the
estimated sequence Y′ (Fig. 3-b). The durations D of the N
symbols of Y, which are given by (Y,D) = B(π), are thus
kept almost constant. This enables the active and inactive states
(tatums) to have similar durations.

The CTC2, however, considers several orders of magnitude
larger number of possible paths than the CTC and thus makes
the exact backpropagation prohibitive in practice. Note that the
forward computation in the inference mode without construct-
ing the computation graph can still be performed quickly.

E. Computationally-Efficient Training
We propose an efficient training method that can be ap-

plied to the CTC2 (and the CTC) at a minimum sacrifice of
performance. Instead of backpropagating the error through all
possible paths on the huge computation graph constructed by
the forward algorithm, we focus on only the most likely path
found by the Viterbi algorithm or a path randomly selected
according to its posterior probability with the Gibbs sampling.
To determine such a path, the forward and backward recursions
can be executed faster in the inference mode. Since the Gibbs
sampling stochastically generates likely paths not limited to
the most likely one, it is expected to be more robust against
local optima than the Viterbi algorithm. Let Z ≜ {zt}Tt=1 be
a latent state sequence, where zt ≜ (st, dt, ct). An alignment
path π is uniquely determined by Z.

1) Viterbi Algorithm: In the forward recursion, the forward
probabilities {αt(zt)}Tt=1 are computed as described in Sec-
tion III-D except that the sum operations over d′ of (20) and
the additions of (21) and (22) are replaced with the max op-
erations, where the indices and terms that take the maximum
values are memorized. In the backward recursion, the states
of most likely Z are determined in the reverse order by back-
tracing the memorized path from zT such that αT (zT ) is max-
imized, where sT ∈ {S−1, S}, dT ∈ {Dmin, . . . , Dmax}, and
cT ∈ {1, . . . , dT }.



2) Gibbs Sampling: We use the forward filtering-backward
sampling algorithm, which was originally proposed for sam-
pling the latent sequence of an HMM or HSMM [30]. In the
forward filtering, the forward probabilities are computed as
described in Section III-D. In the backward sampling, the states
of Z are sampled in the reverse order according to

p(zT ) ∝ αT (zT ), (23)
p(zt|zt+1:T ) ∝ αt(zt)Aztzt+1

(t = {T − 1, . . . , 1}), (24)

where Aztzt+1
represents the transition probability from zt to

zt+1 obtained by normalizing the following matrix:

A′
ztzt+1

=

 p(dt|dt+1) if condition 1 holds,
1 if condition 2 holds,
0 otherwise,

(25)

condition 1: ct = 1 and (y′s = blank and st+1 = st + 1 or
y′s ̸= blank and y′s ̸= y′s+2 and st+1 = st + 2),

condition 2: dt > ct and dt = dt+1 and c = ct+1 + 1 and
(y′s = blank and st+1 = st + 1 or st+1 = st).

IV. EVALUATION

This section reports a comparative experiment conducted for
evaluating the performance of the proposed ADT method and
the effectiveness of the efficient training.

A. Experimental Conditions

The 100 songs of the RWC Music Database: Popular Mu-
sic [31] were randomly split into 60 and 40 songs for training
and test data, respectively. The stereo signals of each song
sampled at 44.1 kHz were analyzed by short-time Fourier
transform (STFT) with a window size of 1024 pts (F = 513)
and a hop size of 441 pts (10 [ms]). The left and right channels
were concatenated to form the input data X. The tempo was
assumed to be between 50 and 250 [bpm], i.e., the duration of
a tatum was between Dmin = 6 to Dmax = 30.

We trained a convolutional recurrent neural network (CRNN)
with the basic CTC or the proposed CTC2. It has 11 convo-
lutional layers with a kernel size of 3 × 3, a padding size of
1×1, and a stride of 1 yielding a (512×4)-dimensional feature
map, on which a dropout of 30% was applied before feeding it
into a linear layer, followed by three bi-directional long short-
term memory (BLSTM) layers with 200-dimensional hidden
states. We used AdamW [32] with a learning rate γ = 0.001, a
weight decay parameters λ = 10−4, β1 = 0.9, β2 = 0.98, and
ε = 10−9 for optimization. When the Viterbi algorithm or the
Gibbs sampling (Section III-E) was used with the CTC, the
basic training (Section III-C) was performed for initialization.
For the CTC2, the basic training could not be tested due to
the huge computational cost.

For comparison, we implemented to test a recent audio-to-
MIDI transcription method based on multi-task learning that
jointly detects drum onset times and beat times at the frame
level [2]. This method was trained using music signals with
frame-level onset annotations, whereas our method was trained
end-to-end using music signals with non-aligned scores. For

TABLE I
THE TATUM- AND FRAME-LEVEL EVALUATION RESULTS.

Method Tatum error rate ↓ F-measure ↑
Basic Viterbi Gibbs Basic Viterbi Gibbs

CTC [14] 34.4 35.1 35.6 79.4 78.6 76.1
CTC2 (ours) - 33.8 33.8 - 79.2 79.0
Vogl et al. [2] 34.5 83.1
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Fig. 5. Examples of tatum-level drum score fragments estimated by the CRNN
trained with the basic CTC or the proposed CTC2. Whereas the CTC often
failed to detect inactive states, the CTC2 correctly detected them.

MIDI-to-score transcription, the detected drum onset times
were quantized on the tatum grid made of the beat times esti-
mated by an HMM-based beat tracker [3] as post-processing.

Our end-to-end transcription method with the CTC or CTC2
and the cascading method mentioned above [2], [3] were eval-
uated in terms of the tatum- and frame-level accuracies. For
tatum-level evaluation of estimated scores, we used the tatum
error rate (TER), an edit distance similar in spirit to the word
error rate (WER) in speech recognition, as follows:

TER =
#insersion + #deletion + #substitution

N
, (26)

where #insersion, #deletion, #substitution represent the
numbers of insertion, deletion, and substitution errors, respec-
tively, and N represents the total number of tatums in the
ground-truth data. For frame-level evaluation of estimated on-
set times, we set the error tolerance to 70 [ms]. Note that the
initial frames of the active states (tatums) determined by the
estimated alignment path π were regarded as drum onset times
for convenience in our end-to-end method. Since those onset
times tend to have a constant offset from the ground-truth onset
times, the best offset was found for each song such that the
performance was maximized for fair comparison.

B. Experimental Results

As shown in Table I, the CTC2 steadily outperformed the
CTC in both metrics. Although the quantitative difference was
small, the CTC2 yielded considerably better drum scores in
the naturalness of rhythm despite the fact that the metrical
structure was not considered. As shown in Fig. 5, the CTC2
successfully estimated a correct number of inactive tatums,
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Fig. 6. Examples of alignment paths estimated by the CRNN trained with the
basic CTC or the proposed CTC2 in the training phase. Whereas the CTC
yielded a path with sudden tempo changes, the CTC2 yielded a diagonal path
with an almost constant tempo.

which were missed by the CTC, between active tatums thanks
to the constant tempo constraint. As shown in Fig. 6, in the
training phase based on the forced alignment between the esti-
mated and ground-truth state sequences, the CTC2 yielded an
alignment path with an almost constant grade (tempo) around
the diagonal line on the lattice. The CTC, in contrast, allowed
an alignment path to discontinuously and frequently change the
grade in a musically-unnatural manner. The Viterbi algorithm
and the Gibbs sampling worked comparably in performance
(Table I) and were several orders of magnitude faster than the
basic backpropagation on the entire computation graph at a
minimum sacrifice of performance (Fig. 7).

Compared with the conventional cascading method [2], our
end-to-end method with the CTC2 performed slightly better
by 0.7 pts in the TER, but worse by 6.0 pts in the F-measure.
Note that the frame-level metric is advantageous for audio-to-
MIDI transcription methods that use precise frame-level onset
annotations for training. Considering that our method can be
trained end-to-end with non-aligned audio-score pairs and does
not aim at frame-level onset detection (the alignment path does
not necessarily indicate precise onset times), this result is still
considered to be promising.

V. CONCLUSION

In this paper, we proposed an end-to-end ADT method based
on the CTC with constant tempo constraint, CTC2 in short,
that estimates a sequence of tatum-level drum score fragments
from a music signal. Although the loss function can be com-
puted efficiently as in the vanilla CTC, the backpropagation

Fig. 7. Comparion of convergence speeds achieved by the basic training, the
Viterbi algorithm, and the Gibbs learning.

over the huge computation graph made by the forward algo-
rithm is computationally prohibitive. To solve this problem, we
proposed a novel efficient training method that performs the
backpropagation through only an alignment path found by the
Viterbi algorithm or stochastically drawn with Gibbs sampling.
Since non-aligned drum scores are easier to collect than labor-
intensive frame-level onset annotations, the proposed end-to-
end ADT method has a large potential for performance im-
provement based on large-scale training.

The CTC2 is a general technique for explicit duration mod-
eling in a monotonic sequence-to-sequence mapping task not
limited to ADT. It can be customized by formulating a duration
model according to the task. In handwritten character recogni-
tion [33], for example, the CTC with constant “size” constraint
would be useful for encouraging each character to have almost
the same size. The Viterbi algorithm and the Gibbs sampling
can also be applied to a wide range of tasks in various fields for
accelerated CTC-based training. We are currently investigating
how to effectively use the Viterbi algorithm in the inference
phase as well as the training phase.
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