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ABSTRACT

This paper presents a fast and accurate alignment method
for polyphonic symbolic music signals. It is known that
to accurately align piano performances, methods using the
voice structure are needed. However, such methods typi-
cally have high computational cost and they are applicable
only when prior voice information is given. It is pointed
out that alignment errors are typically accompanied by per-
formance errors in the aligned signal. This suggests the
possibility of correcting (or realigning) preliminary results
by a fast (but not-so-accurate) alignment method with a
refined method applied to limited segments of aligned sig-
nals, to save the computational cost. To realise this, we
develop a method for detecting performance errors and a
realignment method that works fast and accurately in lo-
cal regions around performance errors. To remove the de-
pendence on prior voice information, voice separation is
performed to the reference signal in the local regions. By
applying our method to results obtained by previously pro-
posed hidden Markov models, the highest accuracies are
achieved with short computation time. Our source code is
published in the accompanying web page, together with a
user interface to examine and correct alignment results.

1. INTRODUCTION

To computationally analyse music performances or to con-
struct performance databases, it is needed to match notes
in a music performance signal (called an aligned signal)
to those in a reference musical score or another perfor-
mance signal (reference signal). This process is called mu-
sic alignment and automating it is a fundamental technique
for music information processing and has been a popular
field of research [1–16]. This study deals with offline sym-
bolic music alignment, with particular focus on piano per-
formances. Both score-to-MIDI alignment and MIDI-to-
MIDI alignment are considered in this paper. We consider
Western classical music or similar music styles where mu-
sical scores exist behind the performances.
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Figure 1. An outcome of the proposed method. Errors
in preliminary alignment caused by reordered note pairs in
the aligned signal are corrected by the realignment method.

Since music alignment between two identical perfor-
mances is trivial, the central issue of automatic music
alignment is to handle deviations in music performances.
Possible deviations include tempo changes, performance
errors (e.g. pitch errors, note insertions and deletions), or-
namentation, and global structural differences (repeats and
skips). To find the optimal alignment, various extensions
of sequence matching methods such as hidden Markov
models (HMMs) [7–9] and dynamic time warping (DTW)
[1,2,6] have been studied. In the method using HMMs [7],
for example, an HMM is constructed for each reference
signal, in which note insertions and deletions, repeats, and
skips are described by transition probabilities, and pitch
errors are described by output probabilities. The aligned
signal is considered as an output sequence from the HMM
and the most probable sequence of latent states is estimated
with the Viterbi algorithm for alignment.

It has been found that, in the case of polyphonic pi-
ano performances, deviations in performances due to asyn-
chronies between hands/voices require special treatments
[4, 5, 7, 9]. Such asynchronies result in reordering of notes
with different score times, which is the main cause of
alignment errors for HMMs or DTWs that are not spe-
cially designed to handle them. Models with explicit voice
structure have been proposed and proved effective to solve
this [4,5,9]. However, prior voice information of the refer-
ence signal is needed for applying these methods, which
imposes limitations on usability since voice information
is not given in single-channel MIDI signals and in some



score file formats. Moreover, these methods have high
computational cost compared to standard HMMs or DTWs
[5–7, 9]. As is empirically known, those reordered notes
appear only occasionally and in most cases the standard
alignment methods work as accurately as the refined meth-
ods using voice information. Thus, the high computational
cost would be reduced if parts of aligned signals, for which
special treatments are necessary, can be selected.

Because significant deviations in music performances
can usually be interpreted as performance errors, align-
ment errors are often connected with performance errors.
For example, a pair of extra and missing notes as in Fig. 1
typically appear as a result of alignment errors. Based on
the authors’ experience, displaying performance errors en-
ables human annotators to easily find alignment errors and
greatly improves the efficiency of examining and correct-
ing automatic alignment results. Likewise, by detecting
performance errors in a given result of automatic align-
ment, it would be possible to select limited regions in the
aligned signal that may contain alignment errors.

Based on these observations, this study aims to develop
an automatic post-processing method for correcting given
symbolic music alignment results. We first develop a per-
formance error detection algorithm that recognises pitch
errors, extra notes, and missing notes in a given align-
ment result. Error regions are then defined as segments of
aligned and reference signals around performance errors
and we investigate how much alignment errors are con-
tained in these regions with various sizes of the regions.
Next we develop a post-processing realignment method
that can handle hand/voice asynchrony based on a voice-
structured model. Since both music alignment and recog-
nition of performance errors involve searches for an opti-
mal choice among possible candidate solutions, we formu-
late them based on statistical models whose parameters can
be optimised from data. To construct a realignment method
that does not require prior voice information, we combine
the method using merged-output HMMs [9] with a voice
(hand) separation method [17]. For concreteness, we use
as a preliminary alignment method the one based on tem-
poral HMMs [7]. The results of the proposed method are
evaluated in comparison with the state-of-the-art methods.

The contributions of this study are as follows. First,
our alignment method achieves the highest accuracy and its
computational cost is much smaller than previous methods
with comparable accuracies. The method works without
prior voice information and can be applied for a wide class
of performance and score data. The source code for our
algorithms and a user interface to examine and correct the
results is published in the accompanying web page [18]. To
our knowledge, this is currently the only publicly available
alignment tool of comparable accuracies. Second, this is
the first paper that quantitatively investigates the relation
between performance errors and alignment errors, which
can be used generally to reduce high computational cost
that is typically required in elaborated methods. Lastly, our
alignment algorithm of the merged-output HMMs yields
better sub-optimisation than a previous one [9].

1.1 Current State-of-the-Art Methods

The method by Gingras and McAdams [5] (GM algo-
rithm), which takes into account the voice structure and
timing information, is regarded as one of the most accu-
rate methods for symbolic music alignment, with 99.978%
of accuracy on their data. The method based on the tem-
poral HMM by Nakamura et al. [7] (NOSW algorithm)
also uses the timing information but not the voice struc-
ture. The method can handle arbitrary repeats and skips,
but the accuracy was lower than the GM algorithm in a di-
rect comparison. For online alignment, the method using
merged-output HMMs for incorporating the voice structure
had better accuracies than the temporal HMMs [9].

Recently, Chen et al. [6] reported a significant lower ac-
curacy (≤ 91.93%) for the GM algorithm on other data and
proposed a method based on DTW (CJL1 algorithm) with
a better accuracy (≤ 98.51%) 1 . Another method (CJL2
algorithm) is proposed in the paper, which is less accurate
but more efficient than the CJL1 algorithm. The CJL al-
gorithms neither use voice information nor have a special
architecture to utilise the voice structure.

2. PERFORMANCE ERROR DETECTION

2.1 Problem Statement

Both reference and aligned signals can be represented as
a sequence of musical notes (called reference notes and
aligned notes) with a pitch and an onset time described as
physical or score time. For MIDI-to-MIDI alignment, the
reference signal can be a performed MIDI signal that has
(almost) continuous onset times. In this case, we cluster
notes according to onset times to obtain a reference sig-
nal with quantised onset times, which enables us to dis-
cuss score-to-MIDI and MIDI-to-MIDI alignment in a uni-
fied way. Specifically, we put a threshold of 35 ms, which
is known to well discriminate chordal notes [19], to form
clusters of notes and then quantise onset times (e.g. in units
of ms etc.). An alignment result is a sequence of labels that
indicates for each aligned note the corresponding reference
note. If there is no corresponding note (as is the case for
extra notes), a distinguished label ‘EXTRA’ is given.

As performance errors we consider pitch errors, extra
notes, and missing notes. Extra notes are aligned notes that
are not matched to any of the reference notes and missing
notes are reference notes that do not appear in the aligned
signal. In this study we consider the strict alignment, for
which each reference note can be matched to at most one
aligned note 2 . For a strict alignment result, performance
errors are automatically determined: aligned notes with-
out corresponding reference notes are extra notes; aligned
notes with pitches different from the corresponding refer-
ence notes have pitch errors; reference notes not appearing

1 A different evaluation measure was used in Ref. [6] and these upper
bounds have been derived as conservative limits.

2 This condition must be relaxed and apply only locally if we allow
global repeats and skips in the aligned signal. In addition, trills and tremo-
los are exceptions where multiple aligned notes correspond to each refer-
ence note. For simplicity and for the lack of space, we concentrate on the
case without ornaments, repeats, and skips in this paper.
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Figure 2. Steps for performance error detection. After (a)
cluster-wise LR Viterbi alignment is performed, (b) note-
wise LR Viterbi alignment is performed for each cluster.

in the alignment result are missing notes.
Standard alignment methods such as HMMs and DTWs

often output alignment results that are not strict (so that
a reference note can appear more than once) and perfor-
mance error indications are not given. Therefore, the aim
of performance error detection is to obtain a strict align-
ment result from a non-strict alignment result, which is
equivalent to identifying extra notes in the latter one. In
fact, our method uses only the information of matched
score times for each note in an input alignment result.

2.2 Model

Our approach for the identification of extra notes is to carry
out two left-to-right (LR) Viterbi alignments, first in units
of ‘chords’ and second in units of notes within each ‘chord’
(Fig. 2). To be precise, we define a reference cluster as a set
of all notes with the same score time in the reference sig-
nal. Aligned notes are clustered so that all successive notes
form a cluster (aligned cluster) as long as their reference
labels are in the same onset cluster. The first LR Viterbi
alignment is then performed on the sequence of aligned
clusters and those clusters assigned a reference cluster dif-
ferent from the original one are identified as extra clusters.
Note that after this procedure each non-extra aligned clus-
ter is matched to a unique reference cluster.

In the next step, extra notes in each (non-extra) aligned
cluster are identified. Based on our intuition that aligned
notes with correct pitches play a pivot role and the as-
signed reference labels should respect the pitch order, we
first identify aligned notes with correct pitches and then
match other notes, which are either extra notes or notes
with pitch errors. Since in general there are multiple notes
with the same pitch in one aligned cluster, the onset time
information should be used here. As a reference point of
onset time, the expected onset time t̃ of the reference onset
cluster is computed by local averaging, similarly as tempo
estimation [19]. If there are multiple candidates with the
correct pitch, the one with an onset time nearest to t̃ is cho-
sen and the other candidates are identified as extra notes.

Let (q1, . . . , qC) denote an ordered set of notes in the
concerned reference cluster, where qc is the integral pitch
of the c-th note and satisfies q1 ≤ q2 ≤ · · · ≤ qC , and let
Qcorr denote the set of reference notes matched to aligned
notes with correct pitches. Similarly, let us order notes in
the concerned aligned cluster according to pitch first and
then onset time. Denoting the pitch and onset time of the

b-th note by pb and tb, we thus have for all b ∈ {1, . . . , B}
(B is the number of notes in the aligned cluster) pb−1 ≤ pb
and tb−1 ≤ tb if pb−1 = pb. Now suppose that a pair
of pivot notes (c, c′) (c, c′ ∈ {1, . . . , C}) satisfies that
qc, qc′ ∈ Qcorr, qc < qc′ , and qj /∈ Qcorr for each qj
with c < j < c′. For such a pair we define Q = {qj | c <
j < c′} and S = {b ∈ {1, . . . , B} | qc < pb < qc′}. The
next step is to match Q and S for each pair (c, c′) of pivot
notes. For aligned notes with pitches higher or lower than
the highest or lowest pivot note, we can similarly define Q
and S as half-bounded sets, and for the case with no pivot
notes, we define Q = {1, . . . , C} and S = {1, . . . , B},
and carry out the following procedure.

The matching is trivial when #Q ≤ 1 and #S ≤ 1.
In other cases, multiple interpretations of pitch errors ex-
ist and some principle must be introduced to find the op-
timal choice (Fig. 2(b)). We solve this optimisation prob-
lem with a statistical performance model including tem-
poral fluctuations and pitch errors, similar to the model in
Ref. [7]. The mapping z : Q 3 j 7→ zj ∈ S is optimised
by LR Viterbi alignment with the following probability:

P (zj = b | zj−1 = b′) = θb′b ψ
pitch(pb − qb)ψtime(tb − t̃)

where θ is a #S×#S LR transition probability matrix,

θb′b =

{
1/#{l ∈ S | l > b′}, b′ < b;

0, otherwise,
(1)

and ψpitch(δp) is the probability of pitch errors in δp semi-
tones (given by Eq. (30) of Ref. [19]), and ψtime(δt) is the
probability of onset time fluctuation given as

ψtime(δt) = N(δt; 0, ρ2). (2)

Here, N( · ;µ,Σ) denotes a normal distribution with mean
µ and variance Σ. The value of ρ is taken as 100 ms in our
implementation. Aligned notes without matched reference
notes are classified as extra notes.

2.3 Error Regions and Alignment Errors

Having identified the performance errors, we now define
error regions in the aligned signal around them. To do this,
we first calculate the synchronised onset time for each ref-
erence cluster by averaging onset times of corresponding
aligned notes, or if there are no such notes, by interpolat-
ing/extrapolating neighbouring synchronised onset times.
We consider, for each extra note n with onset time tn, a
time interval of the form [tn − ∆, tn + ∆) with width ∆
(called an extra note region) and construct the set Re of
such time intervals for all extra notes. Likewise, the set of
pitch error regions Rp is constructed. The set of missing
note regionsRm is similarly constructed by using the syn-
chronised onset times to define each time region. Finally,
the error region R is constructed by combining elements
in Re, Rp, and Rm. If there are overlapping time regions,
they are expanded/unified to one time region at this step
(Fig. 3). Thus, R is a set {[tr, t′r)}NRr=1 of non-overlapping
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time regions where we have t′r−1 < tr for all r. The num-
ber of missing notes, extra notes, and pitch errors in each
region r is denoted by nm(r), ne(r), and np(r).

Let us discuss the relation between performance errors
and alignment errors. An alignment error is defined as a
reference label in an alignment result that is different from
the ground-truth label. We say that an alignment error is
contained in the error regions if the onset time of the in-
correctly aligned note is contained in one of the regions in
R. The proportion of alignment errors contained in the er-
ror regions for varying time width ∆, calculated for align-
ment results of the temporal HMM on the three datasets
explained in Sec. 4, is shown in Fig. 4, together with the
proportion of aligned notes contained in the error regions.
More than 90% of the performance errors are contained in
the error regions for ∆ as small as 0.1 s, while contained
aligned notes remain less than 20% for ∆ ≤ 0.3 s.

For the alignment errors to be corrected by realign-
ment carried out on each error region, not only incor-
rectly aligned notes but also their corresponding reference
notes must be contained in the region. To be precise, for
each time region [tr, t

′
r) in R, we choose segments of the

aligned and reference signals and use them as the aligned
and reference signals for realignment. For the segment of
the aligned signal, the subsequence of aligned notes whose
onset times belong to the time region is used. For these
aligned notes, we obtain the maximal and minimal score
times (τmax and τmin) of corresponding reference notes.
The subsequence of all reference notes whose onset score
times are in the range [τmin, τmax] is used as the segment of
the reference signal. We call an alignment error in an error
region correctable if its ground-truth label is ‘EXTRA’ or
is a reference note in the reference signal segment. We see
in Fig. 4 that the proportion of correctable errors increases
rapidly for ∆ < 0.3 s and gradually for ∆ > 0.3 s.

Although it is not always the case, naively we expect
that the number of performance errors is reduced when
alignment results are corrected, as is evident in the case of
correcting a mismatched pair of missing and extra notes.
On the other hand, if only one performance error exists or
only missing notes exist in an error region, the number of
performance errors cannot be reduced by realigning notes.
By expanding this idea, we can impose conditions on er-
ror regions so that most of the alignment errors remain
contained in the selected error regions but the contained
alignment notes are reduced significantly. Results in Ta-
ble 1, where error regions were imposed the condition of
containing at least two types of performance errors, show
an example of this fact. Such conditions can be used to
increase the efficiency of realignment, as we see in Sec. 4.
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Conditions Alignment
errors

Correctableg
errors

Aligned
notes

None 98.7% 87.5% 18.5%
nmne+nenp+npnm > 0 88.5% 80.3% 9.2%

Table 1. Same as Fig. 4 with and without imposed condi-
tions on the error regions (∆ = 0.3 s).

3. REALIGNMENT

Here we develop a realignment method based on merged-
output HMMs, which is applied to the error regions to cor-
rect the preliminary alignment result. The overall proce-
dure of realignment is illustrated in Fig. 5. We first apply
hand separation for the reference signal segment to esti-
mate the voice structure and then carry out alignment based
on the merged-output HMM using the estimated voices.

3.1 Hand Separation

To formulate a method that does not require prior voice
information, we apply voice separation to each reference
signal segment. Because voice asynchrony in piano per-
formances usually appears between the left- and right-hand
parts and a larger number of voices increases the computa-
tional cost for realignment, we use a technique that sepa-
rates a performance signal into two hand parts [17].

Voice information is described with a binary variable
sm for each note m in the reference signal segment. If
sm = L (or R), the m-th note is in the left-hand (or right-
hand) part. Let us denote the pitches of the reference sig-
nal segment by x = x1:M = (x1, . . . , xM ), where the
notes are ordered according to the onset score time. (Sim-
ilar notations appear throughout the paper.) To estimate
the sequence s = s1:M from the input x, we construct a
merged-output HMM. The Markov model for each voice is
described with transition probabilities on pitches, denoted
by χL

yy′ and χR
yy′ . Introducing pitch variables for the two

voices, yLm and yRm for each m, the latent state variable for
the merged-output HMM is given as Ym = (sm, y

L
m, y

R
m)

and the transition and output probabilities are given as

P (Ym = Y |Ym−1 = Y ′)

= 1
2 (δsL χ

L
y′LyL δy′RyR + δsR χ

R
y′RyR δy′LyL), (3)

P (xm |Ym = Y ) = δsLδyLxm
+ δsRδyRxm

, (4)

where δyy′ denotes Kronecker’s delta. To complete the
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stochastic process, we should specify the initial probabil-
ity, which is given similarly as in Eq. (3) with initial pitch
values denoted by yL0 and yR0 . We use as yL0 and yR0 the
lowest and highest pitch in the reference signal segment.
We can estimate s with the maximal posterior probability
using an efficient Viterbi algorithm [17].

3.2 Realignment Based on Merged-Output HMM

For realignment we use the merged-output HMM proposed
previously [9]. Modifications to the model are introduced
to reduce computational cost and an inference algorithm
that is more rigorous than the original one is derived.

Let us first briefly review the temporal HMM [7] for
music alignment. The aligned signal (segment) can be can
be described as a sequence (p, t), where p = (p1, . . . , pN )
denotes the integral pitches and t = (t1, . . . , tN ) denotes
the onset times (N is the number of aligned notes). The
reference signal (segment) is represented as a sequence
of reference clusters indexed by i ∈ {1, . . . , I} (I is the
number of reference clusters), and the corresponding onset
score time is denoted by τi. Local tempos are denoted by
v = (v1, . . . , vN ). The corresponding reference cluster of
the n-th aligned note is denoted by in ∈ {1, . . . , I}. The
latent state of the temporal HMM is indexed by (in, vn)
for each n ∈ {1, . . . , N} and the output symbol is the pair
(pn, tn). Transition and output probabilities are given as

P (in, vn | in−1, vn−1) = π(in−1, in)N(vn; vn−1, σ
2
v),

P (pn|in) = φ(in, pn), (5)

P (tn | tn−1, in−1 = i′, in = i, vn)

= (1− δii′)N(tn; tn−1 + vn(τi − τi′);σ2
t )

+ δii′Exp(tn − tn−1;λ), (6)

where we have assumed the statistical independence for the
pairs in and vn, and pn and tn. The probability π stochas-
tically describes how the performance proceeds in the ref-
erence signal. The standard deviation σv represents the
amount of tempo variation during the performance. The
pitch output probability φ stochastically describes pitch
errors (similarly as ψpitch in Sec. 2.2); it depends on the
pitch context of reference cluster i. The form of the output
probability for onset times reflects the fact that inter-onset
intervals between chordal notes obey an exponential distri-
bution (denoted by Exp) and those between onset clusters
are approximately given as the product of the local tempo
and the score time interval [7]. The scale parameter λ and
the standard deviations σt and σv have been measured [7].

We can now construct the merged-output HMM for mu-
sic alignment using voice information, by describing each
voice by the temporal HMM and merging outputs from the
two HMMs [9]. To reduce computational cost, we intro-
duce two simplifications to the model. First, since the error
region is considered to span a small time range (less than a
few seconds), the variation of tempos should be relatively
small. We therefore assume a constant tempo v in each
error region, which can be obtained from the preliminary
alignment result. This removes the dynamics of tempos
and reduces the state space of the temporal HMM to that
indexed only by in. Second, again because of the locality
of error regions, we can assume LR transition probabilities
for π. This reduces the number of possible state transition
paths and thus reduces the computational cost. With these
simplifications, the state space of the merged-output HMM
is indexed by k = (s, iL, iR, tL, tR) (s ∈ {L,R}) and the
transition and output probabilities are

P (kn = k | kn−1 = k′)

= 1
2As(i

s, ts | i′s, t′s, v)

·
[
δsLδi′RiRδ(t

′R − tR) + δsRδi′LiLδ(t
′L − tL)

]
,

As(i
s, ts | i′s, t′s; v) = π(i′s, is)P (t′s | ts, i′s, is, v), (7)

P (pn | kn = k) = φ(is, pn), (8)

P (tn | kn = k) = δ(tn − ts), (9)

where δ( · ) is the Dirac delta function. Notating k = k1:N ,
the complete-data probability is given as

P (k,p, t) =

N∏
n=1

P (kn|kn−1)P (pn|kn)P (tn|kn). (10)

The alignment result is obtained by inferring k that
maximises P (k,p, t). The direct application of the Viterbi
algorithm is impossible since the temporal HMM is of
autoregressive type, i.e. the output probability of onset
times depends on past values. Instead of the rough sub-
optimisation method used in Ref. [9], we use a trick of in-
troducing an auxiliary variable that encodes the historical
path, as in Ref. [20], which enables almost exact optimi-
sation. Introduce hn = 1, 2, · · · , which is defined as the
smallest h ≥ 1 satisfying sn 6= sn−h for each n. We have

hn =

{
hn−1+1, sn = sn−1;

1, sn 6= sn−1,
tsn =

{
tn, s = sn;

tn−hn
, s 6= sn.

With a change of variables (h = h1:N , iL = iL1:N , etc.),

P (k,p, t) = P (s,h, iL, iR,p, t)

=
∏
n

{
1
2

[
δsnLδi′RiR + δsnRδi′LiL

]
·
[
δsnsn−1

δhn(hn−1+1)A
same
n + (1− δsnsn−1

)δhn1A
diff
n

]}
,

Asame
n = Asn(isnn , tn | isnn−1, tn−1; v),

Adiff
n = Asn(isnn , tn | isnn−1, tñ; v) (11)

where ñ = n− hn−1 − 1. It is now possible to derive the
Viterbi algorithm for the state space of (s,h, iL, iR). A



Algorithm GM data CJL data Our data
Proposed 0.18± 0.08 0.79± 0.06 0.48± 0.03
NOSW+ 1.46± 0.23 1.81± 0.08 0.64± 0.04
NOSW [7] 1.78± 0.25 2.33± 0.10 2.24± 0.07
GM [5] 0.28± 0.10 [7] 8.07† ± 0.18 [6] N/A
CJL1 [6] N/A 1.49† ± 0.08 [6] N/A
CJL2 [6] N/A 2.20† ± 0.09 [6] N/A

Table 2. Alignment error rates (%) with 1σ statistical er-
rors. The best values within 1σ significance are displayed
in bold font. Daggers indicate lower bounds (see Sec. 1.1).

cutoff (∼ 50) on the maximum value of hn can be put to
reduce the search space with little loss of optimality [20].
Finally, the performance error detection described in Sec. 2
is performed separately on each voice (hand part).

During testing the method, we noticed that alignment
errors as simple as a pair of missing and extra notes as in
Fig. 1 sometimes remain after applying the described re-
alignment step. This is often because the result of hand
separation is not completely correct. To handle this, we
carried out a simple processing step (called pairing step)
of matching trivially corresponding missing and extra note
pairs. For each missing note, an extra note with the same
pitch is searched within the time region of half width ∆,
and if found, they are matched. The pairing step can also
be applied before the realignment step to correct trivial
alignment errors and thus reduce the cost of realignment.

4. EVALUATION

As explained in Sec. 1.1, the state-of-the-art methods are
the NOSW algorithm [7], the GM algorithm [5], and the
CJL algorithms (CJL1 and CJL2) [6]. For comparison, we
run the performance error detection on the results of the
NOSW algorithm (NOSW+ algorithm), and the proposed
realignment was applied to its results. Since the GM and
CJL algorithms were not available from their authors but
the used data were provided, we run the proposed method
and temporal HMM on their data and directly compared
the accuracies. The GM data consisted of seven perfor-
mances of two excerpts of Chopin’s piano pieces (total of
2,815 aligned notes). The CJL data consisted of 21 pairs
of piano MIDI files (total of 25,656 aligned notes), most
of which are synthetic (not human-played) performances.
We also tested the proposed method on the human-played
performance data that we prepared. Our data consisted of
60 excerpts of classical piano pieces each played by three
different pianists (total of 43,608 aligned notes) 3 . For the
GM data and our data it was score-to-MIDI alignment and
for the CJL data it was MIDI-to-MIDI alignment. For the
proposed method, ∆ = 0.3 s was used, error regions sat-
isfying the condition (nmne + nenp + npnm > 0) were
selected for realignment, and the pairing step was applied
before and after the realignment step.

The rates of alignment errors in Table 2 show that for
all data the realignment method significantly improved the
preliminary alignment results: in total 47% (= 369 aligned

3 The data could be provided upon requests to the authors.

GM data CJL data Our data Time (s)
(a) 0.18 0.79 0.48 5.54± 0.07
(b) 0.25 1.17 0.51 6.31± 0.07
(c) 0.14 0.85 0.61 6.32± 0.05

Table 3. Alignment error rates (%) and processing time
(averaged over five trials) for the proposed method with (a)
both paring steps and conditions on error regions, (b) only
conditions on error regions, and (c) only pairing steps.

notes) of alignment errors made by the NOSW+ algorithm
were reduced. The proposed method had the highest ac-
curacies for all datasets. To evaluate computational ef-
ficiency, the processing time was measured. Our algo-
rithms were implemented in C++ on a computer with 3.1
GHz CPU and 16 GB memory running Mac OS X 10.11.
The measured time for the CJL data was 8.25 s for the
NOSW algorithm, 17.76 s for the performance error de-
tection, and 1.12 s for the realignment. Compared to the
reported values [6], 342.70 s and 3535.36 s for the CJL1
and GM algorithm, the computational efficiency of the pro-
posed method is evident, although direct comparison is not
possible because of different computer environments. Ex-
amples demonstrating the effect of the realignment method
are shown in the accompanying web page [18].

To examine the effect of the paring step and the condi-
tions imposed on error regions, the proposed method with-
out these modifications was compared in terms of accura-
cies and processing time for all data (Table 3). In addition
to the expected reduction of computation time, these mod-
ifications were also effective in reducing overall alignment
errors. This suggests that the realignment by the merged-
output HMM increases alignment errors in some error re-
gions and these modifications have effects in avoiding this.
Detailed analyses are currently being undertaken.

5. CONCLUSION

We have described a realignment method for symbolic mu-
sic signals based on merged-output HMMs, which can deal
with reordered notes due to voice asynchrony. To reduce
the high computational cost, performance errors are de-
tected and the merged-output HMMs are applied to regions
around the performance errors rather than to the whole
signal. In all tested data and for both score-to-MIDI and
MIDI-to-MIDI alignment cases, the proposed realignment
method combined with an HMM-based method achieved
the highest accuracies, with short computation time.

The principle of using performance errors to select re-
gions in the aligned signals that possibly contain alignment
errors is generally applicable to save computation time.
For example, when a further refined alignment method is
found in the future, we can apply it to the error regions
of the results by the proposed method, instead of doing
alignment from scratch. In addition, since the realignment
can be done locally, it can be applied to performance sig-
nals with global repeats and skips [7]. For future work,
refinements for the model for performance error detection
by examining human-annotated data would be possible to
further improve the accuracy and efficiency.
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