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ABSTRACT
This paper presents an adaptive karaoke system that can
extract accompaniment sounds from music audio signals
in an online manner and play those sounds synchronously
with users’ singing voices. This system enables a user to
expressively sing an arbitrary song by dynamically chang-
ing the tempo of the user’s singing voices. A key advan-
tage of this systems is that users can immediately enjoy
karaoke without preparing musical scores (MIDI files). To
achieve this, we use online methods of singing voice sep-
aration and audio-to-audio alignment that can be executed
in parallel. More specifically, music audio signals are sepa-
rated into singing voices and accompaniment sounds from
the beginning using an online extension of robust nonneg-
ative matrix factorization. The separated singing voices
are then aligned with a user’s singing voices using on-
line dynamic time warping. The separated accompaniment
sounds are played back according to the estimated warping
path. The quantitative and subjective experimental results
showed that although there is room for improving the com-
putational efficiency and alignment accuracy, the system
has a great potential for offering a new singing experience

1. INTRODUCTION
Karaoke is one of the most popular ways of enjoying music
in which people can sing their favorite songs synchronously
with musical accompaniment sounds prepared in advance.
In the current karaoke industry, musical scores (MIDI files)
are assumed to be available for generating accompaniment
sounds. Professional music transcribers are therefore asked
to manually transcribe music every time new commercial
CD recordings are released. The critical issues of this ap-
proach are that music transcription is very time-consuming
and technically demanding and that the quality of accom-
paniment sounds generated from MIDI files is inferior to
that of original musical audio signals.

It is impractical for the conventional approach to manu-
ally transcribe a huge number of songs on the Web. Con-
sumer generated media (CGM) has recently been become
more and more popular and many non-professional people
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Figure 1. An example of how to use the proposed system.
A user is allowed to expressively sing a song while accom-
paniment sounds are played back synchronously with the
user’s singing voices. The spectrograms and F0 trajectories
of the user’s singing voices and those of the time-stretched
original singing voices can be compared in real time. The
progress of singing voice separation is also displayed.

have composed and distributed their own original songs on
the Web. In Japan, for example, over 120 thousand songs
have been uploaded on a media sharing Web service from
July 2007 [1]. It is thus necessary to generate high-quality
accompaniment sounds from arbitrary music audio signals
without using musical scores or lyrics.

Another limitation of the current karaoke systems is that
users need to manually set the tempo of accompaniment
sounds in advance. Although this limitation can be accept-
able for standard popular music with steady tempo, some
kinds of music (e.g., opera, gospel, and folk songs) are
usually sung in an expressive way by dynamically chang-
ing the tempo of the music.

To solve these problems, we propose an adaptive karaoke
system that can extract accompaniment sounds from mu-
sic audio signals in an online manner and play those sounds
synchronously with users’ singing voices.1 Figure 1 shows
how to use the proposed system. Once a song is selected, a
user is allowed to immediately start to sing the song while
listening to adaptively played-back accompaniment sounds
separated from music audio signals. If the user gradually

1 A demo video of the proposed system is available online:
http://sap.ist.i.kyoto-u.ac.jp/members/wada/smc2017/index.html
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accelerates (decelerates) the singing, the tempo of accom-
paniment sounds is accelerated (decelerated) accordingly
such that those sounds are synchronized with the user’s
singing. The pitches (fundamental frequencies, F0s) of
the singing voices can be compared with those of origi-
nal singing voices in real time. To use this system, all the
user has to do is to prepare only music audio signals.

This system mainly consists of three components: karaoke
generation based on singing voice separation, audio-to-audio
singing-voice alignment, and time-stretching of accompa-
niment sounds (Figure 2). More specifically, accompani-
ment sounds are separated from music audio signals us-
ing an online extension of robust nonnegative matrix fac-
torization (RNMF) [2]. The stretch rate of the separated
accompaniment sounds is estimated using online dynamic
time warping (DTW) between a user’s and original singing
voices. Finally, the stretched version of the accompani-
ment sounds is played back. Since these steps are in par-
allel, it can therefore conceal the processing time for the
singing voice separation from the user.

The main technical contribution of this study is to tackle
real-time audio-to-audio alignment between singing voices
whose pitches, timbres, and tempos many significantly vary
over time. Note that conventional studies on singing-voice
alignment focus on alignment between singing voices and
symbolic information such as musical scores or lyrics. An-
other contribution is to apply this fundamental technique to
a practical application of music performance assistance.

2. RELATED WORK
This section reviews related work on singing information
processing and automatic accompaniment.

2.1 Karaoke Systems
Tachibana et al. [3] proposed a karaoke system that gen-
erates accompaniment sounds from input music audio sig-
nals without preparing musical scores or lyrics. This sys-
tem uses a voice suppression technique to generate the ac-
companiment sounds, whose pitches can be changed man-
ually. Inoue et al. [4] proposed another karaoke system that
automatically adjusts the tempo of accompaniment sounds
to a user’s singing voices, assuming that musical scores
and lyrics are prepared in advance.

2.2 Automatic Music Accompaniment
There have been many studies on automatic music accom-
paniment [5–11]. Dannenberg [5] proposed an online al-
gorithm based on dynamic programming for automatic ac-
companiment. Vercoe [6] proposed an accompaniment sys-
tem that supports live performances using traditional musi-
cal instruments. Raphael [7] used a hidden Markov model
(HMM) to find optimal segmentation of the musical score
of a target musical piece. Cont [8] designed an architecture
that features two coupled audio and tempo agents based on
a hybrid hidden Markov/semi-Markov framework. Naka-
mura et al. [9] reduced the computational complexity of
polyphonic MIDI score following using an outer-product
HMM. Nakamura et al. [10] also proposed an efficient score-
following algorithm under an assumption that the prior dis-
tributions of score positions before and after repeats or

Output
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Figure 2. An overview of the system implementation.

skips are independent of each other. Montecchio and Cont
[11] proposed a particle-filter-based method of real-time
audio-to-audio alignment between polyphonic audio sig-
nals without using musical scores.

2.3 Singing Voice Alignment
Many studies have addressed audio-to-score or audio-to-
lyric alignment, where singing voices are aligned with sym-
bolic data such as musical scores or lyrics [12–15]. Gong
et al. [12] attempted audio-to-score alignment based on a
hidden semi-Markov model (HSMM) using melody and
lyric information. A lot of effort has been devoted to audio-
to-lyric alignment. Fujihara et al. [13], for example, used
singing voice separation and phoneme alignment for syn-
chronizing musical audio signals with their corresponding
lyrics. Iskandar et al. [14] attempted syllabic-level align-
ment based on dynamic programming. Wang et al. [15]
combined feature extraction from singing voices rhythmic
structure analysis of musical audio signals. Dzhambazov
et al. [16] modeled a duration of each phoneme based on
a duration-explicit HMM using mel-frequency cepstral co-
efficients (MFCCs).

2.4 Singing Voice Separation
A typical approach to singing voice separation is to esti-
mate a time-frequency mask that separates the spectrogram
of a target music audio signal into a vocal spectrogram
and an accompaniment spectrogram [17–20]. Huang et al.
[17] used robust principal component analysis (RPCA) to
extract accompaniment spectrograms with low-rank struc-
tures. Deep recurrent neural networks were also used [21].
Ikemiya et al. [18] improved the separation quality by com-
bining RPCA with F0 estimation. Rafii and Pardo [19]
proposed a similarity-based method to find repetitive pat-
terns (accompaniment sounds) in polyphonic audio sig-
nals. As another approach, Yang et al. [20] used Bayesian
non-negative matrix factorization (NMF). Very few studies
have been conducted on online singing voice separation.

3. PROPOSED SYSTEM
This section describes the graphical user interface (GUI)
of the proposed system and the implementation of the sys-
tem based on singing voice separation and audio-to-audio
alignment between singing voices.
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Figure 3. A screenshot of the user interface.

3.1 User Interface

Figure 3 shows a screenshot of the user interface that pro-
vides easy-to-use functions through seven GUI elements:
(1) a selector for music audio signals, (2) a display of the
current stretch rate, (3) a display of the progress of singing
voice separation, (4) a display of the spectrograms of the
user’s and the original singing voices, (5) a display of the
F0 trajectories of the user’s and the original singing voices,
(6) play and stop buttons for controlling the playback, and
(7) a volume control for the accompaniment sound.

The GUI elements numbered 2, 4, and 5 provides vi-
sual feedback of the user’s singing voice and the original
singing voice. The red area (number 2 in Figure 3) indi-
cates whether the stretch rate is matching the user’s inten-
tion. The user can refer how the original singer sings with
the spectrograms displayed in the sky blue area (number 4
in Figure 3). For example, the user can know sections in
which the original singer users a vibrato technique. In ad-
dition, the F0 trajectories displayed in the pink area (num-
ber 5 in Figure 3) helps the user to correct the pitch of the
user’s singing voice.

3.2 Implementation Policies

To reduce the user’s wait time, we specify three require-
ments for the system implementation. First, users should
be able to enjoy karaoke immediately after starting the sys-
tem. Second, singing voice separation should to be pro-
cessed in real time without prior learning. Third, automatic
accompaniment should also be processed in real time.

We chose and implemented a method for each compo-
nent of the system so as to satisfy these three requirements.
More specifically, singing voice separation, recording of a
user’s singing voices, singing-voice alignment, and play-
back of time-stretched accompaniment sounds are processed
in independent threads (Figure 2).

Figure 4. Singing voice separation based on VB-RNMF.
The matrix corresponding to an input audio spectrogram is
separated into a sparse matrix corresponding to the magni-
tude spectrogram of singing voices and a low-rank matrix
corresponding to the magnitude spectrogram of accompa-
niment sounds.

3.3 Singing Voice Separation for Music Audio Signals
To separate a musical audio signal specified by the user
into singing voices and accompaniment sounds, we pro-
pose an online version of variational Bayesian robust NMF
(VB-RNMF) [2]. Although there are many offline methods
of singing voice separation [17–20], our system requires
real-time separation in order to conceal the processing time
of the singing voice separation from the user. Figure 4
shows how online VB-RNMF separates a mini-batch spec-
trogram into a sparse singing-voice spectrogram and a low-
rank accompaniment spectrogram.

More specifically, an input spectrogram Y = [y1, . . . ,yT ]
is approximated as the sum of a low-rank spectrogram L =
[l1, . . . , lT ] and a sparse spectrogram S = [s1, . . . , sT ]:

yt ≈ lt + st, (1)

where L is represented by the product of K spectral basis
vectors W = [w1, . . . ,wK ] and their temporal activation
vectors H = [h1, . . . ,hT ] as follows:

yt ≈Wht + st. (2)

The tread-off between low-rankness and sparseness is con-
trolled in a Bayesian manner stated below.

The Kullback-Leibler (KL) divergence is used for mea-
suring the approximation error. Since the maximization of
the Poisson likelihood (denoted by P) corresponds to the
minimization of the KL divergence, the likelihood function
is given by

p(Y|W,H,S) =
∏

f,t

P
(
yft

∣∣∣∣∣
∑

k

wfkhkt + sft

)
. (3)

Since the gamma distribution (denoted by G) is a conju-
gate prior for the Poisson distribution, gamma priors are
put on the basis and activation matrices of the low-rank
components as follows:

p(W|αwh,βwh) =
∏

f,k

G(wfk|αwh,βwh), (4)

p(H|αwh,βwh) =
∏

k,t

G(hkt|αwh,βwh), (5)
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Figure 5. A warping path obtained by online DTW.

where αwh and βwh are represent the shape and rate pa-
rameters of the gamma distribution.

To force the sparse components to take nonnegative val-
ues, gamma priors with rate parameters given the Jeffreys
hyperpriors are put on those components as the following:

p(S|αs,βs) =
∏

f,t

G(sft|αs,βs
ft), (6)

p(βs
ft) ∝ (βs

ft)
−1. (7)

where αs represents the hyperparameter of the gamma dis-
tribution that controls the sparseness. Using Eqs. (3)–(7),
the expected values of W, H, and S are estimated in a
mini-batch style using a VB technique.

3.4 Audio-to-Audio Alignment between Singing Voices

We use an online version of dynamic time warping (DTW)
[22] that estimates an optimal warping path between a user’s
singing voices and original singing voices separated from
music audio signals (Figure 5). Since the timbres and F0s
of the user’s singing voices can significantly differ from
those of the original singing voices according to the singing
skills of the user, we focus on both MFCCs and F0s of
singing voices for calculating a cost matrix in DTW. To
estimate the F0s, saliency-based F0 estimation called sub-
harmonic summation [23] is performed.

First MFCCs and F0s are extracted from the mini-batch
spectrogram of the separated voice X = {x1, · · · ,xW }
and that of the user’s singing voice Y = {y1, · · · ,yW }.
Suppose we represent the concatenated vector of MFCCs
and F0 extracted from the xi and yi as x′

i = {m(x)
i , f (x)

i }
and y′

i = {m(y)
i , f (y)

i }, X ′ = {x′
1, · · ·x′

W } and Y ′ =
{y′

1, · · ·y′
W } are input to the online DTW. In this concate-

nation, the weight of F0 is smaller than MFCCs. This is
because F0 would be much less stable than MFCCs when
the user has poor skills. If those mini-bathes are not silent,
the MFCCs and F0s are extracted and the cost matrix D =
{di,j}(i = 1, · · · ,W ; j = 1, · · · ,W ) is updated accord-
ing to Algorithms 1 and 2 with constraint parameters W ,
c, and MaxRunCount, i.e., a partial row or column of D

!"#$ %& '()* + , - .

W

W

c

MaxRunCount

Figure 6. Online DTW with input length W = 8, search
width c = 4, and path constraint MaxRunCount = 4.
All calculated cells are framed in bold and colored sky
blue, and the optimal path is colored orange.

is calculated as follows:

di,j = ||x′
i − y′

j ||+min

⎧
⎪⎨

⎪⎩

di,j−1

di−1,j

di−1,j−1.

(8)

The variable s and t in Algorithms 1 and 2 represent the
current position in the feature sequences X ′ and Y ′ re-
spectively. The online DTW calculates the optimal warp-
ing path L = {o1, · · · ,ol},oi = (ik, jk) (0 ≤ ik ≤
ik+1 ≤ n; 0 ≤ jk ≤ jk+1 ≤ n), using the root mean
square for ||xi − yj || incrementally, without backtraking.
(ik, jk) means that the frame xik corresponds to the frame
yjk . Figure 6 shows an example how the cost matrix and
the warping path is calculated. Each number in Figure 6
represents the order to calculate the cost matrix. The pa-
rameter W is the length of the input mini-batch. If the
warping path reaches the W -th row or column, then the
calculation stops. If the warping path ends at (W,k)(k <
W ), the next warping path starts from that point. c restricts
the calculation of the cost matrix. At most c successive ele-
ments are calculated for each calculation of the cost matrix.
MaxRunCount restricts the shape of the warping path.
The warping path is incremented at most MaxRunCount.

The function GetInc decides which to increment a row,
column, or both of the warping path. If the row is incre-
mented from the position (s, t) in the cost matrix, then at
most c successive elements from (s− c, t) to (s, t) are cal-
culated. Otherwise, successive elements from (s, t− c) to
(s, t) are calculated.

For the system reported here, we set the parameters as
W = 300, c = 4,MaxRunCount = 3.

3.5 Time Stretching of Accompaniment Sounds

Given the warping path L = {o1, · · · ,ol}, the system cal-
culates a series of stretch rates R = {r1, · · · , rW } for each
frame of a mini-batch. The stretch rate of the i-th frame,
ri, is given by

ri =
the amount of i in {i1, · · · , il}
the amount of i in {j1, · · · , jl}

. (9)
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Algorithm 1 The online DTW algorithm
s← 1, t← 1, path← (s, t), previous← None
Calculate ds,t following the eq. 8
while s < W, t < W do

if GetInc(s, t) ̸= Column then
s← s+ 1
for k = t− c+ 1, · · · , t do

if k > 0 then
Calculate ds,t following the eq. 8

end if
end for

end if
if GetInc(s, t) ̸= Row then
t← t+ 1
for k = s− c+ 1, · · · , s do

if k > 0 then
Calculate ds,t following the eq. 8

end if
end for

end if
if GetInc(s, t) == previous then

runCount← runCount +1
else

runCount← 1
end if
if GetInc(s, t) ̸= Both then

previous← GetInc(s, t)
end if
path.append((s, t))

end while

Then the stretch rate r for the current mini-batch is calcu-
lated as the mean of R as r = 1

W

∑W
i=1 ri. r is updated on

each iteration of the online DTW. The system finally uses
a standard method of time-scale modification called phase
vocoder [24] to stretch the mini-batch of the separated ac-
companiment sounds by a factor of r. The phase vocoder
stretches the input sound globally by a factor of r.

4. EVALUATION
We conducted three experiments to evaluate the effective-
ness of this proposed system. Quantitatively, we evaluated
the efficiency of the system performance and the accuracy
of real-time audio-to-audio alignment. We also conducted
a subjective experiment.

4.1 Efficiency Evaluation of Singing Voice Separation
To evaluate the efficiency of singing voice separation, we
used 100 pieces sampled at 44.1 kHz from the RWC pop-
ular music database [25]. Each piece was truncated to
30 seconds from the beginning. Spectrograms were then
calculated using short-term Fourier transform (STFT) with
the window size of 4096 samples and the hop size of 10 ms.
Each spectrogram was then split into 30 300-millisecond
mini-batches, which were input to online VB-RNMF.

The average processing time for a 300-millisecond mini-
batch was 538.93 ms, and no mini-batches were processed
in less than 300 ms. This means that the singing voice

Algorithm 2 The function GetInc(s, t)

if s < c then
return Both

end if
if runCount < MaxRunCount then

if previous == Row then
return Column

else
return Row

end if
end if
(x, y) = argmin(D(k, l)), where k == s or l == t
if x < s then

return Row
else if y < t then

return Column
else

return Both
end if

Figure 7. Stretch rate RMSEs measured in the accu-
racy evaluation. The RMSEs represent how the estimated
stretch rates differ from the original rates.

separation actually does not work in real time, but it is suf-
ficient to wait a short while before using the system. For
greater convenience, the performance of singing voice sep-
aration could be improved. One way to achieve this is to
process singing voice separation on a graphics processing
unit (GPU).

4.2 Accuracy Evaluation of Singing Voice Alignment
To evaluate the accuracy of audio-to-audio alignment, we
randomly selected 10 pieces from the database. The singing
voices were separated from the 30-second spectrogram of
each piece. The phase vocoder [24] was then used to stretch
the separated singing voices according to eleven kinds of
stretch rates, r = 0.5, 0.6, · · · , 1.4, 1.5. The separated
voice and the stretched version of it were input to online
DTW, and the stretch rate r′ was calculated from the es-
timated warping path. Then the r′ and r were compared.
The system uses the separated singing voice and the user’s
clean voice, but this evaluation uses the separated singing
voice and a stretched version of the voice to determine a
correct stretch rate.

Figure 7 shows the stretch rate root mean squared errors
(RMSEs) between r and r′. The average RMSE over 10
pieces was 0.92 and the standard deviation was 0.068. This
indicates that the performance difference of audio-to-audio
alignment varied little over different songs, but the align-
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question (1) question (2)
subject 1 partially yes partially yes
subject 2 yes partially yes
subject 3 partially yes no
subject 4 yes partially yes

Table 1. The result of the subjective evaluation.

ment accuracy was not very high. This was because the
separated singing voices contained musical noise, and the
time stretch led to further noise, giving inaccurate MFCCs.

The number of songs used in this evaluation is rather
small. We plan further evaluation using more songs.

There are many possibilities for improving the accuracy.
First, HMM-based methods would be superior to the DTW-
based method. HMM-based methods learn previous inputs
unlike DTW-based methods, and this would be useful to
improve the accuracy. Second, simultaneous estimation of
the alignment and the tempo estimation would improve the
accuracy. The result of tempo estimation could help to pre-
dict the alignment. An approach for this way of alignment
is a method using particle filters [11].

4.3 Subjective Evaluation
Each of four subjects was asked to sing a Japanese popu-
lar song after listening to the songs in advance. The songs
used for evaluation were an advertising jingle “Hitachi no
Ki,” a rock song “Rewrite” by Asian Kung-fu Generation,
a popular song “Shonen Jidai” by Inoue Yosui, and a pop-
ular song “Kimagure Romantic” by Ikimono Gakari. The
subjects were then asked two questions; (1) whether the
automatic accompaniment was accurate, and (2) whether
the user interface was appropriate.

The responses by the subjects are shown in Table 1. The
responses indicate, respectively, that the automatic accom-
paniment was partially accurate and practical, and the user
interface was useful.

The subjects also gave several opinions for the system.
First, the accompaniment sounds were low quality and it
was not obvious whether the automatic accompaniment was
accurate. We first need to evaluate quality of the singing
voice separation. An approach for this problem could be
to add a mode of playing a click sound according to the
current tempo. Second, some of the subjects did not under-
stand what the displayed spectrograms represented. Some
explanation should be added for further user-friendliness,
or only the stretch rate and F0 trajectories should be dis-
played.

The number of the test sample used in this subjective
evaluation is rather small. We plan further evaluation by
more subjects.

5. CONCLUSION
This paper presented a novel adaptive karaoke system that
plays back accompaniment sounds separated from music
audio signals while adjusting the tempo of those sounds
to that of the user’s singing voices. The main components
of the system are singing voice separation based on online
VB-RNMF and audio-to-audio alignment between singing

voices based on online DTW. This system enables a user to
expressively sing an arbitrary song by dynamically chang-
ing the tempo of the user’s singing voices. The quantitative
and subjective experimental results showed the effective-
ness of the system.

We plan to improve separation and alignment of singing
voices. Using the tempo estimation result would help im-
provement of the audio-to-audio alignment. Automatic har-
monization for users’ singing voices would be an interest-
ing function as a smart karaoke system. Another important
research direction is to help users improve their singing
skills by analyzing the weak points from the history of the
matching results between the user’s and original singing
voices.
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