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ABSTRACT

We describe an interactive music composition system that
assists a user in refining chords and melodies by gener-
ating chords for melodies (harmonization) and vice versa
(melodization). Since these two tasks have been dealt with
independently, it is difficult to jointly estimate chords and
melodies that are optimal in both tasks. Another problem
is developing an interactive GUI that enables a user to par-
tially update chords and melodies by considering the la-
tent tree structure of music. To solve these problems, we
propose a hierarchical generative model consisting of (1) a
probabilistic context-free grammar (PCFG) for chord sym-
bols, (2) a metrical Markov model for chord boundaries,
(3) a Markov model for melody pitches, and (4) a metri-
cal Markov model for melody onsets. The harmonic func-
tions (syntactic roles) and repetitive structure of chords are
learned by the PCFG. Any variables specified by a user can
be optimized or sampled in a principled manner according
to a unified posterior distribution. For improved melodiza-
tion, a long short-term memory (LSTM) network can also
be used. The subjective experimental result showed the ef-
fectiveness of the proposed system.

1. INTRODUCTION

Music composition is a highly intelligent task that has been
considered to be done only by musically trained people.
To help musically untrained people create their own musi-
cal pieces, automatic music composition has actively been
studied (e.g., [4, 8, 19, 31]). While conventional studies
have aimed at full automation of music composition, in
the process of music composition, melodies (sequences of
musical notes) and chord sequences are partially and incre-
mentally refined by trial and error until the resulting musi-
cal piece has musically appropriate structure. Our aim is to
develop an interactive arrangement system that can assist
unskillful people to take such a process for reflecting their
preference in creating melodies and chord sequences.

It is non-trivial to reflect user’s preference to a musical
piece in a consistent and unified framework of statistical
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Figure 1: Our interactive music arrangement system based
on a tree-structured generative model.

modeling. This problem is hard to solve especially when a
black-box method (e.g., neural end-to-end learning) is used
for music generation. To incrementally refine a musical
piece, one may iteratively use a harmonization method for
generating a chord sequence from a melody [4, 19, 24, 28]
and a melodization method for generating a melody from a
chord sequence [3,7,8,15,22,30,31]. This approach, how-
ever, cannot enable a user to partially and incrementally re-
fine melodies and chords in consideration of the optimality
of the whole musical piece because each task has a unique
evaluation criterion.

Since music is typically well-characterized by chords
and melodies, it is important to be aware of complicated
structures within and between chords and melodies. when
composing a musical piece. To generate a musically ap-
propriate sequence of chords, the harmonic functions of
chords, which typically consist of three categories, i.e.,
tonic (T), dominant (D), and subdominant (SD), should
be considered because such functions represent syntactic
roles in the same way as parts of speech in written texts. In
addition, a sequence of harmonic functions of chords has a
tree structure [21, 26]. For example, a chord sequence (C,
Dm, G, Am, C, F, G, C) can be interpreted as (((T, SD),
(D, T)), ((T, SD), (D, T))), where subtrees such as (T, SD),
(D, T), and ((T, SD), (D, T)) appear repeatedly in a hierar-
chical manner. Therefore, it is desirable to consider such
the hierarchical tree structure of chord sequences when we
computationally help people to create a new music.

In this paper we propose an interactive music arrange-
ment system that enables musically untrained users to cre-
ate a melody and a chord sequence (Fig. 1). To partially
and incrementally refine the piece, users can choose sev-
eral types of operations that are often exploited by mu-
sically trained people. Specifically, the entire chord se-
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quence and the corresponding tree structure can be refined
jointly for a melody; the onset time of a specified chord can
be refined; two adjacent chords forming a subtree can be
merged into a single chord or a chord can be split into two
chords; and melody notes in the region of a specified chord
can be refined. All a user needs to do is to specify where
to update the piece and it is not necessary to manually edit
individual musical elements.

To optimize a chord sequence and a melody in a unified
criterion, we propose a tree-structured hierarchical gen-
erative model that consists of (i) a probabilistic context-
free grammar (PCFG) generating chord symbols [28], (ii) a
metrical Markov model generating chord rhythms, and (iii)
a Markov model generating melody pitches conditionally
on the chord sequence, and (iv) a metrical Markov model
generating melody rhythms (Fig. 2). The rule probabili-
ties of the PCFG are learned from chord sequences, with
the expectation that the syntactic roles of chords are cap-
tured by the non-terminal symbols [29]. The other mod-
els are also learned from chord and/or note sequences. To
improve the melodization process, a long short-term mem-
ory (LSTM) network can be used instead of the Markov
models (iii) and (iv) for capturing the long-term character-
istic of a melody. Using the generative model trained in
advance, we can estimate any “missing” variables, i.e., an
unpleasant part of chords or musical notes specified by the
user, in a statistical manner.

The major contribution of this study is the realization of
a directability-aware music composition/arrangement sys-
tem based on a unified probabilistic model. This system
provides a user with an easy-to-use GUI that shows other
possibilities for an unpleasant part of the piece and all op-
erations on the GUI are implemented as posterior inference
based on the probabilistic model. Our contribution lies in
the marriage of AI and human creativity.

2. RELATED WORK

This section reviews related studies on automatic harmo-
nization and melodization.

2.1 Automatic Harmonization

Many studies have been conducted for automatic harmo-
nization for given melodies. Some studies aim to gener-
ate a sequence of chord symbols (as in this paper), and
others aim to generate several (typically four) voices of
musical notes. In the former type of research, Chuan and
Chew [4] proposed a method consisting of three processes:
selecting musical notes that might form chords from given
melodies with a support vector machine (SVM), construct-
ing triad chords from the selected notes, and generating
chord progressions by using a rule-base method. Simon
et al. [24] proposed a commercial system MySong based
on hidden Markov models (HMMs) with Markovian chord
transitions. Raczyński et al. [20] proposed similar Markov
models in which chords are conditioned by melodies and
time-varying keys. Tsushima et al. [28] proposed a har-
monization method that considers the hierarchical repeti-
tive structure of sequences of chord symbols obtained by
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Figure 2: A tree-structured hierarchical generative model
for chord symbols and melodies.

PCFGs and pitch transitions conditioned by chord symbols
with Markov models. De Prisco et al. [19] proposed a har-
monization method for only a base line of the input with
a distinctive network that models the dependencies among
bass notes, the previous chord, and the current chord.

In the latter type of research, Ebcioğlu [6] proposed
a rule-based method for generating four-part chorales in
Bach’s style. Several methods of using variants of genetic
algorithms (GAs) based on music theories have also been
proposed [17, 18, 27]. Allan and Williams [2] proposed
an HMM-based method that represents chords as hidden
states and musical notes as observed outputs. A hidden
semi-Markov model (HSMM) [11] has been used for ex-
plicitly representing the durations of chords. Paiement et
al. [16] proposed a hierarchical tree-structured model that
describes chord movements from the viewpoint of hierar-
chical time scales by dividing the notations of chords. To
generate highly convicting four-part chorales, a deep re-
current neural network has also been used for capturing the
long-term characteristic of a melody and a harmony [12].

2.2 Automatic Melodization

There have been many studies on automatic melodization
[3,8,15,22,30,31]. Fukayama et al. [8] developed a system
named Orpheus that generates a melody for a given lyric
in a way that the prosody of the lyric matches the dynam-
ics of the melody. Roig et al. [22] proposed a method of
generating a monophonic melody by using a probabilistic
model of rhythm patterns and pitch contours.

Recent studies have applied deep learning techniques.
In Magenta project [30], for example, recurrent neural net-
works (RNNs) are used for learning long-term dependency
of music. Yang et al. [31] proposed a novel method for
generating diverse monophonic melodies by combining a
generative adversarial network (GAN) with a convolutional
neural network (CNN). To generate diverse melodies, Mo-
gren [15] proposed adversarial training of an RNN that
works on continuous sequential data. The method based
on a restricted Boltzmann machine (RBM) conditioned on
RNNs that models temporal dependency has been proposed
to generate polyphonic music [3]. In addition, Eck et al. [7]
have proposed an LSTM-based method for generating both
melodies and chords by capturing the characteristic of note-
by-note transitions and the mutual dependency between
musical notes and chord symbols.
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3. USER INTERFACE

The proposed system, which is implemented as a web ser-
vice based on HTML5, enables a user to incrementally re-
fine a chord sequence and a melody on a GUI (Fig. 1). To
use a system, a user is asked to upload a melody of eight
bars. The system then estimates a chord sequence that har-
monizes with the melody. The chord onsets are located at
the bar lines. Supported arrangement operations are:

• Updating the chord symbols: The chord symbols
and the latent tree structure behind the chord sym-
bols are jointly optimized for the current melody.

• Updating a chord onset: One of the chord onsets
(boundaries) specified by a user is optimized.

• Splitting a chord: One of the chords specified by a
user is split into two adjacent chords.

• Merging chords: Two adjacent chords that form a
subtree are merged into a single chord.

• Updating the melody: Melody notes in the region
of a chord specified by a user are updated while keep-
ing consistency with neighboring measures.

4. PROBABILISTIC MODELING

This section explains a unified probabilistic model that rep-
resents the hierarchical generative process of a chord se-
quence and a melody. The proposed model consists of four
sub-models, which are trained independently.

4.1 Mathematical Notation

We assume that chord and melody onsets are on the 16th-
note-level grid. Let L be the number of measures of a mu-
sical piece (L = 8 in this paper) and T = 16L be the
total number of time units. A sequence of chord symbols
and that of chord onsets are denoted by z = {zn}Nn=1

and ϕ = {ϕn}Nn=1, respectively, where N is the number
of chords and ϕn takes an integer in [0, T ). Similarly, a
sequence of melody pitches and that of melody onsets in
the region of chord zn is denoted by pn = {pn,i}Ini=1 and
ψn = {ψn,i}Ini=1, respectively, where In is the number of
musical notes in that time span, pn,i is a MIDI note num-
ber from 32 to 93, and ψn,i takes an integer in [ϕn, ϕn+1).
The whole melody is denoted by p = {pn}

N
n=1 and ψ =

{ψn}Nn=1, where I =
∑N
n=1 In is the number of melody

notes.
Let t be a latent tree that derives z according to a PCFG

and tm:n be an inside part (subtree) of t that derives zm:n.
Thus t = t1:N . We often use tm:n to indicate the root node
of the subtree for simplicity. Let t¬m:n be an outside part
of t that derives z1:m−1, tm:n, and zn+1:N .

4.2 Model Formulation

We formulate a unified probabilistic model that represents
the generative process of a latent tree t, chord symbols z,
chord onsets ϕ, melody pitches p, and melody onsets ψ.

4.2.1 Probabilistic Context-Free Grammar for t and z

A derivation tree t and chord symbols z are generated in
this order according to a PCFG G = (V,Σ, R, S), defined
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Figure 3: Configuration of the LSTM network

by a set of non-terminal symbols V that are expected to
represent the hierarchical structure and syntactic roles of
chords, a set of terminal symbols (chord symbols) Σ, a
set of rule probabilities R, and a start symbol S (a non-
terminal symbol located on the root of a syntax tree). There
are three types of rule probabilities. θA→BC is the prob-
ability that a non-terminal symbol A ∈ V branches to
non-terminal symbols B ∈ V and C ∈ V . ηA→α is the
probability that A ∈ V emits terminal symbol α ∈ Σ. A
non-terminal symbol A ∈ V emits a terminal symbol with
a probability of 0 < λA < 1 and otherwise it branches.
These probabilities are normalized as follows:∑

B,C∈V
θA→BC = 1,

∑
α∈Σ

ηA→α = 1. (1)

We let θA = {θA→BC}B,C∈V and ηA = {ηA→α}α∈Σ.

4.2.2 Metrical Markov Models for ϕ and ψ

The metrical Markov model for chord onsets ϕ on the reg-
ular 16th-note-level grid is defined by

p(ϕn|ϕn−1) = πϕn−1mod16,ϕn−ϕn−1
, (2)

where πa,b indicates the probability that a chord starting at
the a-th position in a measure (0 ≤ a < 16) continues for
the duration of b time units (0 < b ≤ T ).

A similar model for melody onsets ψ is defined by

p(ψn,1|ψn−1,In−1
) = ρψn−1,In−1

mod16,ψn,1−ψn−1,In−1
,

p(ψn,i|ψn,i−1) = ρψn,i−1mod16,ψn,i−ψn,i−1 (1 < i), (3)

where ρa,b indicates the probability that a musical note
starts at the a-th position in a measure (0 ≤ a < 16) and
continues for the duration of b time units (0 < b ≤ T ).

4.2.3 Markov Model for p Conditioned on z

The Markov model for melody pitches p conditioned by a
chord sequence given by z is defined by

p(pn,1|pn−1,In−1 , zn) = τznpn−1,In−1
,pn,1

, (4)

p(pn,i|pn,i−1, zn) = τznpn,i−1,pn,i
(2 ≤ i ≤ In), (5)

where τ ca,b is the transition probability from pitch a to pitch
b under chord symbol c.

4.2.4 Bayesian Integration of Four Sub-models

Letting Ω = {t, z,ϕ,p,ψ} be a set of the external random
variables and Θ = {θ,η,λ,π,ρ, τ} be a set of the model
parameters, the unified model is given by

p(Ω,Θ) = p(t, z|θ,η,λ)p(ϕ|π)p(ψ|τ )p(p|z)p(Θ), (6)

where p(Θ) = p(θ)p(η)p(λ)p(π)p(ρ)p(τ ) is a prior dis-
tribution over Θ. To make Bayesian inference tractable,
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we use conjugate Dirichlet and beta priors as follows:

θA ∼ Dir(ξA), ηA ∼ Dir(ζA), λA ∼ Beta(ιA), (7)

πa ∼ Dir(βa), ρa ∼ Dir(γa), τ
c
a ∼ Dir(δca), (8)

where ξA, ζA, ιA, βa, γa, and δca are hyperparameters.

4.2.5 LSTM Network for x Conditioned on c

In melody arrangement, we can also use an LSTM model
that can learn complicated long-term dynamics of melodies.
Let x = {xt}Tt=1 be another representation of the entire
melody, where xt takes a MIDI note number at the t-th
position (0 ≤ t < T ) if the note onset is at that position
and otherwise takes 0. Let c = {ct}Tt=1 be another rep-
resentation of the entire chord sequence given by z and
ϕ, where ct indicates a chord symbol at the t-th position.
Given a sequence of musical notes x1:t = {xi}ti=1 and
that of chord symbols c1:t = {ci}ti=1, the LSTM model
determines the probability of the next musical note given
by p(xt+1|x1:t, c1:t) (Fig. 3).

4.3 Model Training

Our goal is to obtain the maximum a posteriori (MAP) es-
timates of the model parameters Θ = {θ,η,λ,π,ρ, τ}.
To estimate the parameters θ, η, and λ of the PCFG from
a chord sequence z (multiple sequences are used in prac-
tice) in an unsupervised manner, we use an inside-filtering-
outside-sampling algorithm [13,28] for generating samples
from the true posterior distribution p(θ,η,λ, t|z). More
specifically, the latent tree t and the parameters θ, η, and λ
are alternately sampled from the conditional posterior dis-
tributions p(t|θ,η,λ, z) and p(θ,η,λ|t, z), respectively.

The parameters π, τ and ρ of the Markov models are
learned independently. Given a sequence of chord onsetsϕ
and a sequence of melody onsets ψ, the posterior distribu-
tion of π and that of ρ can be calculated, respectively, be-
cause of the conjugacy between the Dirichlet and categor-
ical distributions. Similarly, given a sequence of melody
pitches p associated with a chord sequence specified by z
and ϕ, the posterior distribution of τ can be calculated.
The LSTM network is also trained from the same data.

5. CHORD AND MELODY ARRANGEMENT

This section explains how to leverage the unified model de-
scribed in Section 4 for implementing the five operations
described in Section 3. Let Ω = {t, z,ϕ,p,ψ} be a set
of random variables. To estimate a “missing” part χ ⊂ Ω,
we take a principled statistical approach based on the con-
ditional posterior distribution p(χ|Ω¬χ,Θ), where A¬B
indicates a subset of A obtained by removing the elements
of B from A. Note that full automatic music composition
can be achieved by sampling Ω from p(Ω|Θ).

5.1 Updating the Chord Symbols

When the melody pitches p are fixed, the chord symbols z
and the latent tree t can be optimized by maximizing the
conditional posterior distribution p(t, z|p,Θ). Since both
t and z are latent variables in this operation, we extend the
Viterbi algorithm to infer t and z from p. First, the inside
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Figure 4: Split and merge operations.

probabilities are recursively calculated from the layer of
terminal symbols z to the start symbol S according to

pAn,n = λAmax
z∈Σ

ηA→z p(pn|z), (9)

pAn,n+k = (1− λA) max
B,C∈V
1≤l≤k

θA→BCp
B
n,n+l−1p

C
n+l,n+k, (10)

where p(pn|zn) is the probability that a pitch subsequence
pn is generated conditionally on chord zn:

p(pn|zn) =
In∏
i=1

p(pn,i|pn,i−1, zn), (11)

where pn,0 = pn−1,In−1
. The most likely t and z are ob-

tained by recursively back-tracking the most likely paths
from the start symbol S.

5.2 Updating a Chord Onset

When the melody pitches p and the melody onsets ψ are
given and the chord symbols z are fixed, a chord onset ϕn
can be optimized by maximizing the conditional posterior
distribution given by

p(ϕn|z,ϕ¬n,p,ψ,Θ)

∝ p(pn−1|zn−1)p(pn|zn)p(ϕn|ϕn−1)p(ϕn+1|ϕn), (12)

where ϕn is restricted such that ψn−1,1 ≤ ϕ ≤ ψn,In .

5.3 Splitting a Chord and Merging Chords

The chord symbols z and the chord onsets ϕ can be locally
refined by splitting a chord into adjacent chords or merging
adjacent chords into another chord (Fig. 4). A subtree of t
is updated accordingly. The split operation can be applied
to any chord zn while the merge operation is restricted to
adjacent chords zn:n+1 forming a subtree tn:n+1.

A chord zn associated with a non-terminal symbol tn:n
is split at a 16th-note-level position ϕ into two new chords
zLn and zRn associated with two new symbols tLn and tRn
by maximizing the conditional posterior distribution given
by p(tLn , t

R
n , z

L
n , z

R
n , ϕ|t¬n:n, z¬n,ϕ,p,ψ,Θ). This oper-

ation makes a new subtree that has tn:n as its root node,
derives tLn and tRn , and generates zLn and zRn . To do this, we
use the extended Viterbi algorithm for estimating the most
likely subtree from pn. First, the inside probabilities are
recursively calculated from the layer of terminal symbols
zLn and zRn to the root node tn:n according to

αAϕ = λAmax
z∈Σ

ηA→z p(p
L
n |z, ϕ), (13)

βAϕ = λAmax
z∈Σ

ηA→z p(p
R
n |z, ϕ), (14)

ptn:n

ϕ = max
B,C∈V

θtn:n→BCα
B
ϕ β

C
ϕ p(ϕ|ϕn)p(ϕn+1|ϕ), (15)
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where pLn and pRn are the subsequences of pitches obtained
by splitting pn with a boundary ϕ. The most likely zLn , zRn ,
tLn , tRn , and ϕ are obtained by recursively back-tracking the
most likely paths from tn:n.

Two adjacent chords zn and zn+1 associated with non-
terminal symbols tn:n and tn+1:n+1 are merged into a sin-
gle chord z associated with a non-terminal symbol tn:n+1

by maximizing the conditional posterior distribution given
by p(z|t¬n:n+1, z¬n:n+1,ϕ¬n+1,p,ψ,Θ). The most likely
z is obtained as follows:

z = arg max
z′∈Σ

ηtn:n+1→z′ p(pn|z′)p(pn+1|z′). (16)

5.4 Updating the Melody

When a chord symbol zn, the last pitch pn−1,In−1
in the re-

gion of the previous chord zn−1, and the first pitch pn+1,1

in the region of the next chord zn+1 are given, a sequence
of musical notes in the region of zn (between ϕn and ϕn+1)
is obtained by maximizing the conditional posterior dis-
tribution p(pn|zn, pn−1,In−1

, pn+1,1,Θ). To do this, we
propose an efficient algorithm based on dynamic program-
ming. Let αyt,dt be the marginal likelihood that a note at
the pitch yt is located on the score time t and the duration
of the previous note is dt on a chord zn:

αyt,dt = p(yt, dt|zn) (17)

This probability can be calculated recursively in the score
time t ∈ {ϕn, ..., ϕn+1, ψn+1,1}.

αyt,dt = ρt−dt,t
∑

yt−dt , dt−dt

αyt−dt ,dt−dt
τznyt−dt ,yt

In each score time t, dt can take values in {1, ..., t, t −
ψn−1,In−1

}. By using this probability, we can recursively
sample pn from the beat score time ψn+1,1 to ψn−1,In−1

.
Another improved way of partially updating the melody

is to use the LSTM model. Suppose that we aim to update
xi:j in the whole melody x. Given a chord sequence c
and melody segments x1:i−1 and xj+1:T , the missing part
xi:j can be sampled from the conditional posterior distribu-
tion p(xi:j |c, x1:i−1, xj+1:T ) ∝ p(x|c). First, the pitches
x1:i−1 and chords c1:i−1 are fed to the network to update
the hidden states. The missing part xi:j is then sampled
sequentially according to the probability p(xt+1|x1:t, c1:t)
learned by the LSTM. This enables us to evaluate p(x|c).
Among a sufficient number of generated samples of x1:i−1,
a sample with the highest p(x|c) is selected.

6. EVALUATION

This section reports objective and subjective evaluations on
the user interface and the music arrangement method.

6.1 Experimental Conditions

To train the PCFG, we used 705 chord sequences of mu-
sical sections (e.g., verse, bridge, and chorus) from 468
pieces of popular music included in the SALAMI dataset
[25]. Only chord sequences with a length between 8 and
32 measures were chosen. The vocabulary of chord sym-
bols was limited to the combinations of the 12 root notes
{C, C#, ..., B} and the 2 chord types {major, minor}. The

number of kinds of non-terminal symbols of the PCFG was
set to 12. The values of the hyperparameter ιA were all set
to 1.0 and those of the other parameters were all set to 0.1.
To train the three Markov models, we used 9902 pairs of
melodies and the corresponding chord sequences from 194
pieces of popular music included in Rock Corpus [5]. To
train the LSTM, we used 9265 melodies associated with
chord sequences from pieces of popular music included in
Rock Corpus and Nottingham Database [1]. Note that all
of the data used in our experiments were transposed to the
C major or C minor key. The number of the hidden units
was 50 and the softmax-cross-entropy was used as a loss
function. The parameters of the LSTM were optimized by
using Adam [14]. The number of samples generated by the
LSTM (described in Section 5.4) was 50.

6.2 Objective Evaluation of Melody Arrangement

We evaluated the function of updating a melody in terms
of the note density of the generated musical notes via 10-
fold cross validation on the Rock Corpus and Nottingham
Database. For the region of each chord zn, a sequence of
melody pn is arranged by using the two methods based on
the Markov model and the LSTM described in Section 5.4.
We measured the mean squared error (MSE) between the
note density per measure of the generated musical notes
and the mean value of the density of other regions given
by

MSE=
1

N−1

N−1∑
n=1

{
16I∗n

ϕn+1−ϕn
−

∑
m̸=n 16Im∑

m̸=n (ϕm+1−ϕm)

}2

,

where I∗n and In were the number of generated musical
notes and that of the original musical notes, respectively.
The average MSE was calculated over all melodies. The
average MSE obtained by the LSTM model was 5.52 while
that obtained by the Markov model was 6.42. This indi-
cates that the LSTM-based method is a little more effec-
tive for updating a partial melody in consideration of the
note density of the whole melody because it can capture
the long-term dependency.

6.3 Subjective Evaluation of the Proposed System

We conducted the subjective evaluation of the system1 in
terms of usability and effectiveness in interactive chord and
melody arrangement. Five melodies of 8 measures were
extracted from the RWC music database [9, 10]. We asked
11 subjects to test our system. Four subjects who had
the experience of playing musical instruments for more
than five years were regarded as people with musical back-
grounds. Each subject was asked to interactively make a
musical piece by using each of the five melodies as an ini-
tial seed and then grade the system on a 5-point Likert scale
(from “strongly agree (1)” to “strongly disagree (5)”) in
terms of the following 15 criteria:

• The chord sequences obtained were suitable for the
melodies (I).

• The chord sequences obtained by the split or merge
operation were musically natural (II, III).

1 The interface used in this experiment is available online:
http://sap.ist.i.kyoto-u.ac.jp/members/tsushima/ismir2018/
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Figure 5: Results for people with musical backgrounds
(top) and those for people without musical backgrounds
(bottom). The middle bars indicate the mean value.

• The melodies obtained were suitable for the chord se-
quences (IV).

• The melodies obtained were musically natural (V).
• The musical pieces obtained by updating chord sym-

bols, splitting a chord, merging chords, or updating a
melody were interesting (VI, VII, VIII, IX).

• The function of updating chord symbols, splitting a
chord, merging chords, or updating a melody was use-
ful (X, XI, XII, XIII, XIV).

• The user interface has the capability of helping users
make musical pieces (XV).

We also asked the subjects to tell us how each of them felt
about the system.

The results of this user study is shown in Fig 5. In terms
of the naturalness and the interestingness, the two opera-
tions, updating chord symbols and updating melodies, ob-
tained the slightly high mean ratings of 3.67 in criterion (I),
3.69 in criterion (IV), and 3.51 in criterion (VI). As seen in
the score for the criterion (V), the subjects with musical
backgrounds, compared with the others, tended to feel that
the updated melodies were less musically natural.As seen
in the score for the criterion (IX), the subjects with musical
backgrounds tended to feel that the updated melodies were
more interesting. In terms of the usefulness of each oper-
ation, each operation obtained the reasonably high mean
ratings (from 3.27 to 3.91).

We obtained the following opinions on the usability of
our system:
• It was interesting that even a user without any expe-

riences in music composition can edit a musical piece
by iterating several operations.

• An operation that updates one chord symbol is neces-
sary for more freely editing a chord sequence.

We also obtained the following opinions on the problems
of some operations:
• The chord sequences obtained were almost always ap-

propriate for all samples of melodies but the system
tended to generate only basic chords (e.g., C major).

• The updated melodies were often unnatural when an
original melody has some repeated sections.

The reason for the former problem may be that the chord
symbols are updating by using the Viterbi algorithm. The
reason for the latter problem is probably that the LSTM
cannot capture the global repetitive structure of a melody.
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Figure 6: Example operation for interactive generation of
chord sequences and melodies.

6.4 Example of Chord and Melody Arrangement

Fig. 6 shows how the proposed method generates chord se-
quences and melodies. The score (melodies and chords) at
the top shows an initial state in which the chord symbols
were optimized for the melody in the input file (the chord
onsets were located at the bar lines). The second score
shows the state in which the two regions of the melody un-
der the 3rd and 6th chords were updated in order. The third
chord sequence shows the state in which the 4th chord, B♭
major, was split into F major and B♭ major. The fourth
chord sequence shows the state in which the 7th chord, A
minor, and the 8th chord, D minor, were merged into A
minor. This indicates that the proposed method can suc-
cessfully help a user partially update a melody while keep-
ing the consistency of the whole melody and that it can
generate a chord sequence by considering the latent tree
structure behind the chord sequence.

7. CONCLUSION

This paper presented an interactive music arrangement sys-
tem that enables a user to incrementally refine a chord se-
quence and a melody. The experimental results showed
that the proposed system has a great potential to help a
user create his or her original musical pieces.

There would be much room for improving our method.
To improve the diversity of generated chord symbols, the
use of some sampling or beam-search method would be ef-
fective. To improve the naturalness of generated melodies,
the use of a bidirectional LSTM [23] would be effective for
considering the repetitive structures of melodies.

For more specific studies on the effectiveness of our sys-
tem, we plan to measure how well test users can incremen-
tally refine a musical piece compared with the conventional
methods, by counting the number of necessary operations
to make musical pieces meet their satisfaction. We also
plan to conduct large-scale user studies of the system on
the Web. Collecting time-series data of users’ operations
and created pieces, it would be possible to infer their mu-
sical preference and improve the model by reinforcement
learning. Using the same data, it would be possible to re-
veal the process of music creation by humans in terms of
edit operations and optimization strategies.
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