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Bayesian Melody Harmonization
Based on a Tree-Structured Generative Model

of Chord Sequences and Melodies
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Abstract—This paper describes a melody harmonization
method that generates a sequence of chords (symbols and onset
positions) for a given melody (a sequence of musical notes). A
typical approach to melody harmonization is to use a hidden
Markov model (HMM) that represents chords and notes as latent
and observed variables, respectively. This approach, however,
does not consider the syntactic functions (e.g., tonic, dominant,
and subdominant) and hierarchical structure of chords that play
vital roles in traditional harmony theories. In this paper, we
propose a unified hierarchical generative model consisting of
a probabilistic context-free grammar (PCFG) model generating
chord symbols associated with syntactic functions, a metrical
Markov model generating chord onset positions, and a Markov
model generating a melody conditioned by a chord sequence. To
estimate a musically natural tree structure, the PCFG is trained
in a semi-supervised manner by using chord sequences with tree
structure annotations. Given a melody, a sequence of a variable
number of chords can be estimated by using a Markov chain
Monte Carlo method that partially and iteratively updates the
symbols, onset positions, and tree structure of chords according
to the posterior distribution of chord sequences. Experimental
results show that the proposed method outperformed the HMM-
based method and a conventional rule-based method in terms of
predictive abilities.

Index Terms—Melody harmonization, probabilistic context-
free grammar, Markov model.

I. INTRODUCTION

CHORD arrangement is one of the most important tasks
in the composition of popular music because chord

sequences characterize musical moods and styles. To help
musically untrained people compose original pieces, automatic
melody harmonization, i.e., automatic generation of a chord
sequence for a given melody (note sequence), has been studied
[1]–[14]. For this, it is necessary to computationally character-
ize acceptable chord sequences and the relationships between
chords and melody notes. Statistical modeling is effective for
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Fig. 1. A tree-structured hierarchical generative model that stochastically
generates a chord sequence and a melody in this order. The labels Si represent
syntactic categories behind chord symbols explained in Section III.

data-driven induction of such musical grammar and can be
applied to various musical styles [7], [10], [11].

A typical approach for melody harmonization based on
statistical modeling is to integrate a probabilistic model rep-
resenting a chord sequence with one representing the rela-
tionships between chords and a melody. If the former is a
Markov or semi-Markov model and the latter is a generative
model of a melody given a chord sequence, the integrated
model is described as a hidden Markov model (HMM) [7]
or hidden semi-Markov model (HSMM) [10]. In this model,
the sequential dependency of chord symbols is described with
transition probabilities, which can be learned from data.

This approach, however, does not consider that some chords
play a similar syntactic role and that music has a hierarchical
structure (phrase, section, etc.) [15]–[17]. In harmony theories,
the syntactic roles of chord symbols are known as harmonic
functions such as tonic (T), dominant (D), and subdominant
(SD)1. The hierarchical structure of chords or harmonic func-
tions is often represented as a tree [17]–[21]. For example, a
chord sequence (C, Dm, G, Am, C, F, G, C) in C major key
can be interpreted as a function sequence (T, SD, D, T, T, SD,
D, T), which is further parsed as a binary tree ((T, ((SD, D),
T)), (T, ((SD, D), T))), where subtrees such as (SD, D) and (T,
((SD, D), T)) appear repeatedly in different abstraction levels.
It has been shown that statistical models such as an HMM and
a probabilistic context-free grammar (PCFG) model that can
represent the syntactic functions and hierarchical structure of
chords outperform Markov models in predictive ability [22].

1In the simple cases consisting of triads, these functions are associated with
the three main triads (C, G, and F in C major key) and their relative minor
chords.
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Another problem with the conventional Markov or semi-
Markov models is that the metrical structure of chord onset
positions cannot be modeled. Chord transitions are considered
for a fixed time step (e.g., 16th note) and in semi-Markov
models chord durations are explicitly modeled. While chord
onsets tend to appear more frequently at strong beats, such
metrical structure cannot be described with these conventional
Markov or semi-Markov models.

In this paper we propose a statistical melody harmonization
method incorporating syntactic functions, tree structure, and
the metrical structure of chords, aiming to generate musically
meaningful chord sequences. We formulate a unified hierar-
chical generative model that consists of (1) a PCFG model
representing the generative process of chord symbols, (2) a
metrical Markov model [23], [24] representing that of chord
onset positions, and (3) a Markov model representing that of a
note sequence from a chord sequence (Fig. 1). The harmonic
functions and hierarchical structures of chords are represented
by the leaf and inside nodes of a latent tree behind chords.
The metrical structure of chord rhythms is represented by the
metrical Markov model. Given a melody, chord sequences
with a variable number of symbols can be sampled from the
posterior distribution by using a Markov chain Monte Carlo
(MCMC) method.

For application of statistical models, it is crucial to train
the parameters properly from data. In our previous work, we
developed an unsupervised learning method for the PCFG
model and experimentally showed the potential of this model
for melody harmonization [12], [13]. The estimated latent trees
behind chord sequences, however, often mismatch human’s
structural interpretations and the leaf nodes of the trees fail
to represent the harmonic functions of chords. This is mainly
because the PCFG learning tends to easily get stuck in bad
local optima due to its strong sensitivity to initialization. It
is thus hard to induce musically meaningful latent trees from
non-annotated chord sequences like (C, Dm, G, Am, C, F, G,
C) in an unsupervised manner.

To solve this problem, we propose two refined methods for
learning the PCFG model. First, we develop an initialization
method to make the model’s grammar more similar to human’s
interpretation. We initialize the PCFG model by using an
HMM that represents harmonic functions and chords as latent
and observed variables, respectively (Section III-C3). Second,
we develop a learning method using additional data to make
the model predict latent trees similar to human’s structural
annotations. We train the PCFG model in a semi-supervised
manner by using weakly annotated chord sequences like ((C,
((Dm, G), Am)), (C, ((F, G), C))) as explained in Section
III-C2. We confirm that these methods contribute to estimating
latent trees behind chords that represent hierarchical musical
structure (Section V).

The major contribution of this study is to present a Bayesian
inference method for the unified probabilistic model of chords
and melodies, which is an extension of a previous study
[12]. Another contribution is a comprehensive report of the
experimental evaluation results. We also show the effectiveness
of the initialization and semi-supervised learning methods by
systematic comparisons. Sections III-C2 and III-C3 present

new technical improvements and Section V presents new
experimental results. The other sections describe the method
proposed in [12] in full detail.

In Section II of this paper, we review related work on
melody harmonization and music language modeling. Sec-
tion III formulates the proposed model and Section IV presents
the melody harmonization method based on the model. Sec-
tion V reports the experimental evaluations. We conclude with
a brief summary and mention of future work in Section VI.

II. RELATED WORK

This section reviews related studies on melody harmoniza-
tion and on music language models of chords and melodies.

A. Melody Harmonization

Melody harmonization systems can be roughly categorized
into two types in terms of their objectives. In the first type of
systems, the aim is to generate a sequence of chord symbols
given a melody, and in the second type of systems, the aim is
to generate multiple voices of musical notes.

As a study on the first type of systems, Chuan and Chew [6]
proposed a method that selects musical notes from a given
melody that are likely to form chords by using a support
vector machine, constructs triads from the selected notes,
and makes a chord sequence by using hand-crafted rules. Si-
mon et al. [7] developed a commercial system called MySong
based on an HMM representing sequential chord transitions,
and Raczyński et al. [11] proposed a similar Markov model
representing chords conditioned by melodies and time-varying
keys. Tsushima et al. [12] proposed a harmonization method
based on a PCFG model representing the hierarchical structure
of chords and a Markov model representing the transitions of
melody notes. De Prisco et al. [9] proposed a harmonization
method for bass-line inputs based on a distinctive network that
represents the relationships between bass notes, the previous
chord, and the current chord.

Recently, a deep neural network (DNN)-based method for
melody harmonization was proposed by Lim et al. and was
shown to outperform an HMM-based method in both objective
and subjective evaluation metrics [25]. An advantage of our
approach over such DNN-based approaches is that the pro-
posed model can learn and represent the grammatical structure
of music in a similar way as humans do, which is considered
essential for enhancing the directability of interactive com-
position systems [13]. In contrast, it is generally difficult to
analyze or interpret the internal structure of DNNs.

As a study on the second type of systems, Ebcioğlu [1]
proposed a rule-based method for generating four-part chorales
in Bach’s style. Several methods using variants of genetic al-
gorithms based on music theories have also been proposed [2],
[3], [8]. Allan and Williams [4] proposed an HMM-based
method that represents chords as latent variables and notes
as observed outputs. An HSMM has been used for explicitly
representing the durations of chords [10]. Paiement et al. [5]
proposed a hierarchical tree-structured model that describes
chord movements from the viewpoint of hierarchical time
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scales by dividing the notations of chords. To generate four-
part chorales, a deep recurrent neural network has also been
used for capturing the long-term dependency characteristics of
melodies and harmonies [14].

B. Statistical Modeling of Melodies and Chords
Statistical models of melodies play an important role in the

tasks of automatic harmonization and melody generation. The
standard approach for modeling sequences of musical notes
(melodies) is to use Markov models [26]. Pachet et al. [27]
proposed an efficient approach for generating a melody based
on Markov models with constraints. To describe the generative
process of melodies conditioned on chords, Simon et al. [7]
proposed a generative model based on HMMs and bag-of-
words that considers chord symbols as latent variables and
notes as observed words.

In the generative theory of tonal music (GTTM) [17], a note
sequence is assumed to form a tree that describes the degrees
of the relative importance of individual notes. This theory con-
sists of many hand-crafted rules used for recursively reducing a
note sequence to a single note. Computational implementation
of the GTTM and its application to music analysis have been
studied [28], [29]. A probabilistic formulation of the GTTM
based on a PCFG was recently proposed for learning the
production rules of the PCFG from melodies [30].

Statistical models of chord sequences have been actively
investigated for automatic chord estimation [31]–[33], musical
grammar analysis [18], [19], and automatic music arrangement
[21], [34]. The most popular approach is to use a Markov (or
n-gram) model [31], [34]. To avoid the sparseness problem
with a large value of n, various smoothing methods have been
proposed [35]. Yoshii et al. [32] proposed a vocabulary-free
infinity-gram model that represents the dependency of a chord
on a variable-length history of chords.

To make generated chord sequences musically natural and
interpretable, it is considered effective to describe the musi-
cal properties of chords (e.g., syntactic categories, cadential
properties, and hierarchical structure) as in harmony theo-
ries. Tsushima et al. [22] attempted unsupervised learning of
HMMs for spontaneously discovering the syntactic categories
of chords. As a result, the learned syntactic categories cor-
responded to the harmonic functions and the trained HMM
outperformed Markov models in predictive ability.

To capture the syntactic structure behind chord sequences,
tree-structured models have been studied. Paiement et al. [33]
formulated several hidden layers of state transitions for rep-
resenting the tree structure behind chords. Some studies
attempted to explicitly describe the generative grammar to
represent the hierarchical structure of chords [18]–[21]. Steed-
man [18] and Rohrmeier [19] proposed CFG-based production
rules for chord sequences. A probabilistic extension was later
studied for music arrangement [21]. In these studies, a list
of non-terminal symbols and that of production rules were
manually given based on music theories or musical intuition.

III. PROBABILISTIC MODELING

This section explains the probabilistic model of chords and
melody notes. After introducing some mathematical notations

Leaf nodes

Fig. 2. Mathematical notation for tree structure t behind chord symbols z
based on a PCFG model. In this example, the number of chords N is 6 and
S represents the start symbol.

TABLE I
MATHEMATICAL NOTATION IN THIS PAPER

Symbol Meaning Section

N Number of chord symbols III-A
T Number of 16th-note-level time units III-A

z Chord symbols III-A
y Chord onset positions III-A
x Pitches of melody notes III-A
o Onset positions of melody notes III-A

t Tree III-B1
t̂ Tree structure without node labels III-C2

K Number of distinct non-terminal symbols III-B1
θ,η,λ Parameters of PCFG III-B1

π Transition probabilities over chord onset positions III-B2
τ Transition probabilities over melody pitches III-B3

in Section III-A, the model is formulated in Section III-B.
Methods for training the model parameters are described in
Section III-C. For simplicity of notation, we consider that
data consist of only one pair of a chord sequence and a
melody. Extension for the case with multiple sequences is
straightforward.

A. Mathematical Notation

A list of the mathematical symbols is provided in Table I.
In this paper, we assume that musical pieces have the time
signature of 4/4 and the onset positions of chords and melody
notes are on the 16th-note-level grid. Let L be the number of
measures of a musical piece (L = 8 in this paper) and T =
16L be the total number of time units. A sequence of chord
symbols and their onset positions are denoted by z = {zn}Nn=1

and y = {yn}Nn=1, respectively, where N is the number of
chords and each yn takes an integer in [0, T ). Similarly, the
pitches and onset positions of melody notes in the region of
chord zn are denoted by xn = {xn,i}Ini=1 and on = {on,i}Ini=1,
respectively, where In is the number of melody notes in the
region, xn,i is a MIDI note number from 33 (A1) to 92 (G#6),
and on,i takes an integer in [yn, yn+1). The whole melody
is denoted by x = {xn}Nn=1 and y. Let I =

∑N
n=1 In be

the total number of melody notes. We use the integer pitch
representation instead of the spelled pitch representation and
treat enharmonic notes equivalently. Since most notes in the
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Fig. 3. Dependencies of variables and parameters of the generative model.

popular music data we use in this study are on the diatonic
scale, the information lost in the integer pitch representation
is little and is considered to have a small effect.

B. Model Formulation

We formulate a unified hierarchical generative model of
chord symbols z, chord onset positions y, and melody pitches
x (Fig. 3). This model consists of three sub-models: (1) a
PCFG model of z, (2) a metrical Markov model of y, and (3)
a Markov model of x conditioned by z and y.

1) PCFG Model of Chord Symbols: Following the idea
of previous studies [18], [19], [21], we assume that chord
symbols z are derived from a latent tree t in a similar way that
words are derived from a syntactic tree in the phrase structure
grammar of natural language. A derivation tree t and chord
symbols z are generated in this order according to a PCFG
G = (V,Σ, R, S) defined by a set of non-terminal symbols
V = {Sk}Kk=1, a set of terminal symbols (chord symbols) Σ,
a set of rule probabilities R, and a start symbol S (a non-
terminal symbol at the root of t), where K is the number
of distinct non-terminal symbols. The non-terminal symbols
are expected to represent the syntactic roles and hierarchical
structures of chord symbols. There are three types of rule
probabilities. θ(A → BC) is the probability that a non-
terminal symbol A ∈ V branches into non-terminal symbols
B ∈ V and C ∈ V . η(A → α) is the probability that
A ∈ V emits terminal symbol α ∈ Σ. λA ∈ [0, 1] is the
probability that a non-terminal symbol A ∈ V emits a terminal
symbol, and otherwise it branches. The first two probabilities
are normalized as follows:∑

B,C∈V
θ(A→ BC) = 1,

∑
α∈Σ

η(A→ α) = 1. (1)

A tree and a chord sequence are generated by a cascading
process of generating non-terminal symbols from the start
symbol and finally terminal symbols from the non-terminal
symbols. The probability of the tree and chord sequence is
given as a product of relevant branching and emitting proba-
bilities. We write θA = {θ(A→ BC)}B,C∈V , θ = {θA}A∈V ,
ηA = {η(A → α)}α∈Σ, η = {ηA}A∈V , and λ = {λA}A∈V .
Similar notations are used throughout this paper.

A subtree of t that derives zm:n = {zm, zm+1, ..., zn} is
denoted by tm:n (Fig. 2). In particular, we have t = t1:N .

We also use the notation tm:n to indicate the root node of
the subtree for simplicity. In this paper, we refer to the nodes
{tn:n}Nn=1 that emit chord symbols as leaf nodes.

2) Metrical Markov Model of Chord Onset Positions: The
metrical Markov model [23], [24] of chord onset positions y
on the 16th-note-level grid is defined as follows:

p(yn|yn−1) = πyn−1mod16,yn−yn−1
, (2)

where πa,b indicates the probability that a chord has an onset
at the a-th position in a measure (0 ≤ a < 16) and a duration
of b time units (0 < b ≤ T ). We write πa = {πa,b}Tb=0

3) Markov Model of Melody Pitches: The Markov model of
melody pitches x conditioned by chord symbols z and chord
onset positions y is defined as follows:

p(xn,1|xn−1,In−1 , zn) = τzn(xn−1,In−1 , xn,1), (3)
p(xn,i|xn,i−1, zn) = τzn(xn,i−1, xn,i) (2 ≤ i ≤ In), (4)

where τ c(a, b) is the transition probability from pitch a to
pitch b under chord symbol c, that is, the probability that pitch
a would be generated following pitch b in the time span of
chord symbol c. We write τ ca = {τ c(a, b)}92

b=33 (33 = A1 and
92 = G#6).

4) Hierarchical Bayesian Integration of Three Sub-Models:
Let Ω = {t, z,y,x} be the set of the latent and observed
variables and Θ = {θ,η,λ,π, τ} be the set of model
parameters. Assuming that chord symbols and melody pitches
are generated independently, the whole model is given by

p(Ω,Θ) = p(Ω|Θ)p(Θ)

= p(t, z|θ,η,λ)p(y|π)p(x|z,y, τ )p(Θ), (5)

where p(t, z|θ,η,λ) is the probability of chords and a tree
given by the PCFG model, p(y|π) is the probability of
chord onset positions given by the metrical Markov model,
p(x|z,y, τ ) is the probability of melody pitches given by
the Markov model, and p(Θ) = p(θ)p(η)p(λ)p(π)p(τ ) is a
prior distribution over the model parameters. We consider prior
distributions on the model parameters to make the learning
process more efficiently (avoiding getting stuck in bad local
optima) [22] and to induce the model’s probability parameters
sparser, which tends to represent syntactic structure similar
to human’s interpretation [36]. To make Bayesian inference
tractable, we use conjugate Dirichlet and beta priors:

θA ∼ Dir(ξA), ηA ∼ Dir(ζA), λA ∼ Beta(νA), (6)
πa ∼ Dir(βa), τ ca ∼ Dir(γca), (7)

where ξA, ζA, νA, βa, and γca are hyperparameters. It is
known that smaller values of these hyperparameters make the
probability parameters sparser.

C. Model Training

The three sub-models described in Section III-B can be
trained separately using different types of training data. For
training the PCFG model, the basic method [12] of unsuper-
vised learning is explained in Section III-C1. As refinements
to this method, we propose a semi-supervised learning method
using tree structure annotations on z in Section III-C2 and an
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Fig. 4. Four possible learning methods for the PCFG model. The left and
right columns show unsupervised and semi-supervised learning methods,
respectively. The top and bottom rows show the cases with and without
an HMM-based initialization method. Question marks indicate the variables
estimated in unsupervised learning.

initialization method based on an HMM of z in Section III-C3,
to make a tree t estimated by the PCFG model close to human
interpretation. Combining these two refinements, we have four
possible learning methods shown in Fig. 4. In Sections III-C4
and III-C5, we explain how to train the metrical Markov model
of chord onset positions y and the Markov model of melody
pitches x.

1) Unsupervised Learning of PCFG: Our goal is to obtain
the maximum-a-posteriori (MAP) estimate of the model pa-
rameters Θ = {θ,η,λ,π, τ}. To estimate the parameters θ,
η, and λ from chord symbols z in an unsupervised manner, we
draw samples from the posterior distribution p(θ,η,λ, t|z) by
using a Gibbs sampling method based on the inside filtering-
outside sampling algorithm [12], [36]. More specifically, the
latent tree t and the parameters θ, η, and λ are alternately
updated according to the conditional posterior distributions
p(t|θ,η,λ, z) and p(θ,η,λ|t, z), respectively.

In the inside filtering step, the conditional probability (inside
message) that a subsequence zn:m is derived from a subtree
whose root node is A is denoted by

pAn,m = p(zn:m|tn:m = A). (8)

This probability can be calculated recursively from the leaf
nodes to the root node as follows:

pAn,n = λA η(A→ zn), (9)

pAn,n+k

=
∑

B,C∈V
(1−λA)θ(A→ BC)

∑
1≤l≤k

pBn,n+l−1p
C
n+l,n+k. (10)

In the outside sampling step, a latent tree t is obtained by
recursively branching paths from the start symbol S to the leaf
nodes according to p(t|θ,η,λ, z). Suppose that we already
have a node tn:n+k = A. Two non-terminal symbols B and

C derived from tn:n+k are then sampled according to

p(l, B,C)

= p(tn:n+l−1 = B, tn+l:n+k = C | tn:n+k = A, zn:n+k)

= (1− λA)θ(A→ BC) pBn,n+l−1 p
C
n+l,n+k/p

A
n,n+k, (11)

where l ∈ {1, . . . , k} indicates a split position.
Finally, we sample parameters θ, η, and λ according to

p(θ,η,λ|t, z) = p(θ|t, z)p(η|t, z)p(λ|t, z) as follows:

θA | t, z ∼ Dir(ξA + uA), (12)
ηA | t, z ∼ Dir(ζA + vA), (13)
λA | t, z ∼ Beta(νA +wA), (14)

where u(A → BC) is the number of times that a binary
production rule A → BC is used, v(A → α) is the number
of times that an emission rule A → α is used, wA,0 is the
number of times that a non-terminal symbol A branches into
two non-terminal symbols, and wA,1 is the number of times
that a non-terminal symbol A emits a chord.

2) Semi-Supervised Learning of PCFG: The PCFG model
can be trained in a semi-supervised manner by using tree-
structure annotations. Such annotations can be represented as
S-expressions on z (e.g., ((C, ((Dm, G), Am)))) that specify
the shape of a tree t. The tree shapes of t and tm:n without
information about non-terminal symbols are denoted by t̂ and
t̂m:n, respectively.

To estimate the parameters θ, η, and λ from chord sym-
bols z with a tree structure t̂, we extend the inside-filtering
algorithm. More specifically, we calculate the posterior distri-
bution p(t|t̂, z,θ,η,λ) of a tree t having a fixed shape t̂ by
modifying Eq. (10) as follows:

pAn,n+k =
∑

B,C∈V
(1−λA)θ(A→ BC)q(B,C, n, k) (15)

q(B,C, n, k)

=


pBn,n+l−1p

C
n+l,n+k if ∃l ∈ [1, k]

s.t. t̂n:n+l−1 ⇒ zn:n+l−1, t̂n+l:n+k ⇒ zn+l:n+k,

0 otherwise,

where t̂m:n ⇒ zm:n means that a subtree t̂m:n derives chord
symbols zm:n. Because of the constraints of the probabilities in
the above expression, the trees sampled in the outside sampling
step match the tree shape t̂.

3) HMM-Based Initialization of PCFG: In the unsuper-
vised learning of the PCFG model (Section III-C1), non-
terminal symbols given to the leaf nodes of a tree t tend to
mismatch the musically meaningful harmonic functions. To
solve this, we propose a technique for initializing the PCFG
model by using an HMM. This technique is motivated by the
fact that the HMM is able to automatically learn syntactic
categories corresponding to the harmonic functions [22].

First, an HMM that represents chords and syntactic func-
tions as observed and latent variables, respectively, is trained
by using Gibbs sampling (see [22] for details). The most likely
sequence of latent variables {yn}Nn=1 is then estimated by
using the Viterbi algorithm. These latent variables are used to
specify the non-terminal symbols of the leaf nodes {tn:n}Nn=1
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of a latent tree. Specifically, in the first inside-filtering step of
Gibbs sampling for the PCFG, we use the following formula
instead of Eq. (9) to initialize the leaf nodes:

pAn,n =

{
λA (if A = yn),

0 (otherwise).
(16)

The probability parameters are randomly initialized. This
technique can be used with the semi-supervised learning of
the PCFG in Section III-C2.

4) Bayesian Learning of Metrical Markov Model: Given
chord onset positions y, the posterior distribution of π can be
analytically calculated as follows:

πa | y ∼ Dir(βa + qa), (17)

where qa,b is the number of times that a chord has an onset
at the a-th position in a measure and has a duration of b time
units in the training data.

5) Bayesian Learning of Pitch Markov Model: Given chord
symbols z, onset positions y, and melody pitches x, the
posterior distribution of τ can be analytically calculated as
follows:

τ ca | z,y,x ∼ Dir(γca + rca), (18)

where rc(a, b) is the number of times that pitch a transits to
pitch b in the region of chord symbol c in the training data.

IV. MELODY HARMONIZATION

This section explains how to generate chord sequences for
a given melody based on the proposed model.

A. Problem Specification

Given a melody with pitches x and onset positions o and
model parameters Θ = {θ,η,λ,π, τ}, our goal is to estimate
an appropriate number of chords with symbols z and onset
positions y, where a latent tree t should also be estimated.
In this paper, we calculate the expectations of Θ under the
posterior distributions given by Eqs. (12), (13), (14), (17), and
(18) and use them as the point estimates of Θ.

To draw samples of t, z, and y from the posterior distri-
bution p(t, z,y|x,o,Θ), we propose a Metropolis-Hastings
(MH) sampler with four types of proposals:
• Global update: Update z and t by using a stochastic or

deterministic method while keeping the number of chords
and y unchanged.

• Chord split: Update t, z, and y by choosing one of the
chords and split it into two adjacent chords.

• Chord merge: Update t, z, and y by choosing two
adjacent chords derived from a node of t and merge them
into a single chord.

• Rhythm update: Update y by choosing a chord n and
move its onset position yn back or forth.

One of these operations is randomly selected and a new
sample s∗ = (t∗, z∗,y∗) is proposed by referring to a current
sample s = (t, z,y). The acceptance ratio of s∗ is given by

g(s∗, s) = min

{
1,
p(s∗)p̄(s|s∗)
p(s)p̄(s∗|s)

}
, (19)

where p(s) = p(t, z,y,x,o|Θ) is the complete joint prob-
ability of s based on the proposed model and p̄(s∗|s) is a
proposal distribution. If the proposal is rejected, t, z, and
y are not updated. In the global update, a proposed chord
sequence is always accepted. This process is iterated until
the posterior probability reaches a plateau. In the history
of generated samples, we use a sample that maximizes the
posterior distribution p(t, z,y|x,o,Θ) as the final estimate of
chords.

B. Global Update
We propose two methods for jointly updating chord symbols

z and a latent tree t while fixing the chord onset positions y.
One is to use Gibbs sampling for stochastically drawing z and
t from the posterior distribution p(z, t|y,x,o,Θ). The other
is to use a Viterbi algorithm for deterministically estimating z
and t that maximize p(z, t|y,x,o,Θ).

The stochastic method is similar to the inside filtering-
outside sampling algorithm described in Section III-C1 except
that both t and z are estimated. The inside messages are
calculated recursively from the terminal symbols z to the start
symbol S as follows:

pAn,n = λA
∑
zn∈Σ

η(A→ zn) p(xn|zn), (20)

pAn,n+k = (1− λA)
∑

B,C∈V
1≤l≤k

θ(A→ BC)pBn,n+l−1p
C
n+l,n+k, (21)

where p(xn|zn) is the probability that pitches xn are generated
from chord zn and is given by

p(xn|zn) =

In∏
i=1

τzn(xn,i−1, xn,i), (22)

where xn,0 is interpreted as xn−1,In−1
. A latent tree t is

obtained by recursively sampling paths from the start symbol
S to the leaf nodes as in the outside-sampling algorithm. Each
chord symbol zn is then sampled as follows:

p(zn) ∝ η(tn:n → z) p(xn|zn). (23)

In the deterministic method, the sum operations in Eqs. (20)
and (21) are replaced with max operations. Instead of using
the outside sampling, a latent tree t is obtained by recursively
back-tracking the most likely paths from the start symbol S
to the chord symbols.

C. Chord Split and Merge
A chord is split or adjacent chords are merged by consider-

ing both a latent tree t and a melody. Tree t is locally updated
by these operations (Fig. 5) and the split operation has an
inverse relationship with the merge operation.

In the split operation, a sample s∗ is given by splitting a
randomly selected chord zn into zL and zR, estimating a new
onset position y∗ ∈ [yn + 1, yn+1 − 1], and splitting a non-
terminal symbol tn:n into two non-terminal symbols tL and
tR. The proposal distribution is thus given by

p̄(s∗|s) =

{
θ(tn:n→tLtR)η(tL→zL)η(tR→zR)

N(yn+1−yn−1) yn+1 ≥ yn + 1,

0 otherwise.
(24)
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Fig. 5. Chord split and merge operations.

In the merge operation, a sample s is given by merging a
randomly selected pair of adjacent chords zL and zR into z
according to the probability η(tn:n → z). Thus we have

p̄(s|s∗) =
η(tn:n → z)

#MergeableNodes(s∗)
, (25)

where #MergeableNodes(s∗) is the number of pairs of adjacent
chords that can be merged into s∗, i.e., those chords forming
a subtree with two leaves. The inverse proposal distribution
for the split operation is the same as the proposal distribution
for the merge operation and vice versa. In addition, we have

p(s∗)

p(s)
= (1− λtn:n

)θ(tn:n → tLtR)

· λtLη(tL → zL)λtRη(tR → zR)

λtn:n
η(tn:n → zn)

· p(x
L|zL)p(xR|zR)p(y∗|yn)p(yn+1|y∗)

p(xn|zn)p(yn+1|yn)
, (26)

where xLn and xRn are sequences of pitches obtained by
splitting xn at a position y∗.

In the split operation, the acceptance ratio of s∗ given by
Eq. (19) is calculated by using Eqs. (24), (25), and (26). In the
merge operation, the acceptance ratio of s∗ given by Eq. (19)
is calculated by exchanging s and s∗ in Eqs. (24), (25), and
(26). Through the split and merge operations, the number of
chords N is optimized stochastically.

D. Rhythm Update

Chord onset positions y are sampled from the conditional
posterior distribution p(y|t, z,x,o,Θ). A new sample s∗ is
given by moving a randomly selected onset position yn to a
position y∗n ∈ [yn−1 + 1, yn+1 − 1]. The proposal distribution
p̄(s∗|s) and its inverse version p̄(s|s∗) are given by

p̄(s∗|s) = p̄(s|s∗) =
1

N − 1

1

yn+1 − yn−1 − 1
. (27)

The likelihood ratio is given by

p(s∗)

p(s)
=
p(x∗n−1|zn−1)p(x∗n|zn)p(y∗n|yn−1)p(yn+1|y∗n)

p(xn−1|zn−1)p(xn|zn)p(yn|yn−1)p(yn+1|yn)
, (28)

where x∗n−1 and x∗n are the sequences of pitches in the regions
of chords n−1 and n with the new onset position y∗n. The
acceptance ratio of s∗ given by Eq. (19) is calculated by using
Eqs. (27) and (28).

V. EVALUATION

This section reports three objective experiments for evaluat-
ing the unified model of chords and melody notes and another
experiment for evaluating the melody harmonization method
based on the unified model.

A. Experimental Conditions
To train the PCFG model, 399 chord sequences correspond-

ing to musical sections of seven or eight measures (e.g., verse,
bridge, and chorus sections) were extracted from the Billboard
data [37] using its section annotations. Due to the limited
amount of available data, we limit the vocabulary of chord
symbols used for the experiments to the set of major and
minor triads. The vocabulary of chord symbols consists of
the combinations of the 12 root notes {C, C#, ..., B} and
the two chord types {major, minor}, and other chord types
are reduced to triads according to the root, third, and fifth
notes (diminished and augmented triads are discarded in the
analysis). We manually made tree structure annotations data2.
In Eqs. (6) and (7), the elements of hyperparameter ν were
all set to 1.0 and those of ξ, ζ, β, and γ were all set to 0.1.

To train the parameters of an HMM used for initializing
the leaf nodes of a tree t, a set (called J-pop data) of chord
sequences of 4,872 Japanese popular songs obtained from
a public web page3 was used. More specifically, an HMM
with four latent states was trained such that these states
correspond to the three harmonic functions (tonic, dominant,
subdominant) and an extra function as in [22]. Fig. 6 shows
the emission probabilities of the HMM. To train the metrical
Markov model described in Section III-B2 and the Markov
model described in Section III-B3, 9,902 pairs of melodies and
chord sequences were extracted from 194 pieces of popular
music included in the Rock Corpus [38].

As shown in Fig. 4, we tested the following four learning
configurations of the PCFG model:

(i) US-PCFG: Unsupervised learning (Section III-C1).
(ii) SS-PCFG: Semi-supervised learning based on tree

structure annotations (Section III-C2).
(iii) US-HMM-PCFG: Unsupervised learning with HMM-

based initialization (Sections III-C1 and III-C3).
(iv) SS-HMM-PCFG: Semi-supervised learning based on

tree structure annotations with HMM-based initialization
(Sections III-C2 and III-C3).

All data (Billboard data, J-pop data, and Rock Corpus) were
transposed to the C major or C minor key (we used the
local key information when it is given, to deal with possible
modulations within each piece). To put emphasis on the
Markov model of a melody, each element of the trained τ
was squared and then normalized.

B. Statistical Chord Modeling
We investigated the performance of the PCFG model in

predicting chord sequences, for varying numbers of non-
terminal symbols K. The number K was changed from 1

2The data is available at http://sap.ist.i.kyoto-u.ac.jp/members/tsushima/
chord tree annotation/

3J-Total Music: http://music.j-total.net
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Fig. 6. The emission probabilities of an HMM. Ten chord symbols with
highest emission probabilities are shown for each state.

to 25 in the framework of five-fold cross validation. As an
evaluation measure, we calculated the perplexity for an unseen
chord sequence z as follows:

Pchord = exp

(
− 1

N
ln

p(z|λ,θ,η)∑
z′:|z′|=N p(z

′|λ,θ,η)

)
, (29)

where p(z|λ,θ,η) = pS1,N is the marginal probability obtained
by using the inside algorithm given by Eqs. (9) and (10).

As shown in Fig. 7, US-HMM-PCFG achieved the lowest
(best) perplexities and outperformed US-PCFG for almost all
K. This indicates that the HMM-based initialization method
improves the generalization capability of the PCFG model for
unseen chords. Interestingly, SS-HMM-PCFG underperformed
US-HMM-PCFG. This means that the semi-supervised learn-
ing method using tree structure annotations does not contribute
to chord prediction. This is presumably because there are many
possible structural interpretations for chord sequences and the
unsupervised learning method is better at dealing with such
ambiguity in a probabilistic manner. Nonetheless, SS-HMM-
PCFG can be considered useful for uniquely estimating the
most likely tree behind chords (Section V-D).

The improvement of the test-set perplexity was saturated
before K reached 20. Considering the computational cost, the
optimal values of K were estimated as 12, 17, 16, and 18 for
learning methods (i)–(iv), respectively, which were used for
the following evaluations.

C. Statistical Melody Modeling

We investigated the performance of the unified model in
predicting melodies by using 172 melodies extracted from the
RWC music database [39]. These melodies were disjoint with
the datasets (Billboard data, J-pop data, and Rock Corpus)
used for training the unified model. In this experiment, we
assumed that the chord onset positions y were fixed to bar
lines, to enable analytically marginalizing out chord symbols
and the tree in the calculation of the melody perplexity defined

below. As an evaluation measure, we calculated the perplexity
for an unseen melody (x, o) (per note) as follows:

Pmelody = exp

(
−1

I
ln

p(x,o|y,λ,θ,η)∑
z:|z|=N p(z|λ,θ,η)

)
, (30)

where p(x,o|y,λ,θ,η) = pS1,N is the marginal probability
obtained by using the inside algorithm given by Eqs. (20)
and (21). Note that chord symbols z and a tree t are both
marginalized out.

For comparison, we tested a measure-wise HMM that
represents chords and melody notes as latent and observed
variables, respectively. To conduct a fair comparison with the
PCFG model, chords were allowed to change only at bar
lines in this model. As a generative process, one chord for
each measure is generated according to a Markov model, and
melody notes in each measure is generated by a Markov model
conditionally dependent on the generated chord as in Eq. (4).
The transition probabilities of chords were learned from the
Billboard data. Given a melody, the most likely chord sequence
was estimated using the Viterbi algorithm.

As shown in Fig. 8, the results of melody modeling were
consistent with those of chord modeling shown in Section V-B.
US-HMM-PCFG attained the lowest perplexity and US-PCFG,
US-HMM-PCFG, and SS-HMM-PCFG outperformed the con-
ventional HMM (6.09). The HMM-based initialization of the
PCFG model improved the ability of melody prediction.

D. Tree-Structured Parsing

We investigated the performance of the unified model in
tree-structured parsing of chord sequences. 5-fold cross val-
idation on the Billboard dataset [37] was conducted and the
unsupervised learning method (Section III-C1) was compared
with the semi-supervised learning method (Section III-C2). As
an evaluation measure, we calculated the tree edit distance
(TED) [40] between an estimated tree and the ground-truth
tree. Since the non-terminal symbols of the ground-truth tree
are not given, only the estimated tree shape was evaluated.

As shown in Fig. 9, the semi-supervised learning method
turned out to be effective for improving the performance of
tree-structured parsing. For the unsupervised learning meth-
ods, the HMM-based initialization also led to better tree-
structured parsing results. Interestingly, applying both the
semi-supervised learning and the HMM-based initialization of
the PCFG model slightly degraded the performance. When
the leaf nodes of a tree were guided to represent harmonic
functions, the production rules used in a higher level were
often disjointed from those used in a lower level. This might
prevent the model from inducing a globally consistent tree
from a chord sequence. Overall, we confirmed the efficacy of
the proposed learning techniques for improving the similarity
between human structural annotations of chord sequences and
those generated by the PCFG model.

E. Melody Harmonization

We investigated the performance of the proposed melody
harmonization method based on the unified probabilistic model
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of a chord sequence and a melody. For evaluation, we extracted
172 pairs of human-composed melodies and chord sequences
from the RWC music database [39]. We tested eight configu-
rations by combining the four learning configurations (i)–(iv)
with the sampling method and the Viterbi algorithm described
in Section IV-B. For comparison, we tested a standard HMM-
based method, similar to the model of [7], that represents chord
transitions at the 16th-note level. We also tested a rule-based
method implemented in the Melisma Music Analyzer [41] that
generates a sequence of chord root notes for a given melody.

For the proposed method, we ran the MCMC sampler to

generate a sufficient number (= 5000) of chord sequences
for a given melody. From the generated chord sequences,
one with the highest posterior probability was chosen as the
final chord sequence. We also used a set of five samples of
chord sequences with the highest posterior probabilities in
the calculation of the mean reciprocal rank (MRR) explained
later. Since the learning methods of the unified model (i)–
(iv) and the proposed melody harmonization method are all
based on MCMC sampling, we took the average score of each
measure over 500 trials, i.e., we ran the harmonization method
five times using 100 different parameter sets of the PCFG
model. For the HMM-based method, we similarly sampled
a sufficient number (= 1000) of chord sequences using the
forward filtering-backward sampling algorithm [43] and chose
five samples with the highest posterior probabilities for the
calculation of the MRR. For the other metrics, we used
the most probable chord sequence obtained by the Viterbi
algorithm.

The methods were evaluated by comparing the generated
chord sequences with the original human-composed chord
sequence. To evaluate the local correctness of generated
chord sequences, we calculated the accuracy by comparing
the generated sequence with the highest posterior probability
with the original sequence at the 16th-note level. We also
calculated the tonal pitch step distance [42], which measures
the dissimilarity between two chord sequences based on a
cognitive model of tonality (see [42] for details). We also
calculated the mean reciprocal rank (MRR) by comparing the
five chord sequences with the original sequence at the 16th-
note level. To evaluate the global correctness of generated
chord sequences, we calculated the Levenshtein edit distance
between the generated sequence and the original sequence. To
compare the proposed method with the rule-based method, we
also calculated the Levenshtein distance between the generated
and original sequences of root notes by ignoring the chord
types.

As shown in Fig. 10, the Viterbi algorithm consistently
outperformed the sampling method and US-HMM-PCFG per-



10 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. XX, XX 2020

(%) (c) MRR

(e) Levenshtein distance (chord symbol)(d) Levenshtein distance (chord root note)

US-
PCFG

SS-
PCFG

US-
HMM-
PCFG

SS-
HMM-
PCFG

HMM-
based

Rule-
based

US-
PCFG

SS-
PCFG

US-
HMM-
PCFG

SS-
HMM-
PCFG

HMM-
based

18

19

20

21

22

23

24

0.21

0.22

0.24

0.25

0.26

0.23

0.27

: Viterbi

US-
PCFG

SS-
PCFG

US-
HMM-
PCFG

SS-
HMM-
PCFG

US-
PCFG

SS-
PCFG

US-
HMM-
PCFG

SS-
HMM-
PCFG

HMM-
based

Rule-
based

90
91

92
93

94

95

96
97

98
99

86

88

90

92

94

96

: Sampling

(a) Accuracy

based

HMM-
based

(a) Accuracy

US-
PCFG

SS-
PCFG

US-
HMM-
PCFG

SS-
HMM-
PCFG

HMM-
based

Rule-
based

4

2.8

3

3.2

3.4

3.6

3.8

(b) Tonal pitch step distance

Fig. 10. Evaluation results of melody harmonization: (a) accuracy, (b) tonal pitch step distance [42], (c) MRR, (d) Levenshtein distance for chord root notes,
and (e) Levenshtein distance for chord symbols. For accuracy and MRR, the higher, the better. For Levenshtein distance, the lower, the better. We plot the
piece-wise mean and standard error corresponding to a 68% confidence interval.

formed best in terms of the MRR and the Levenshtein distance.
In terms of accuracy, the proposed method outperformed the
HMM-based method (19.6%), but underperformed the rule-
based method (22.1%). In terms of the MRR, the proposed
method outperformed the HMM-based method (0.233). As
for the tonal pitch step distance and Levenshtein distance for
root notes, the proposed method with the Viterbi algorithm
outperformed both the HMM-based method and the rule-based
method. In the case of the Levenshtein distance for chord
symbols, the proposed method significantly outperformed the
HMM-based method (97.2). These results show that the pro-
posed method was inferior to the rule-based method in terms
of the accuracy, but outperformed it in terms of the other
compared metrics. A possible reason is that while the PCFG
is able to capture the global structure with a derivation tree, it
cannot explicitly model the sequential dependency of chords,
unlike Markov models.

F. Example Results

Fig. 11 shows examples of chord sequences generated by the
proposed and conventional methods. The numbers of distinct
non-terminal symbols of US-PCFG and SS-HMM-PCFG were
set to 12 and 17, respectively. The HMM-based method often
generated a sequence consisting of a very few chord symbols.
The rule-based method generated a chord sequence consisting
of a reasonable number of symbols but could not generate
musically natural rhythms.

In contrast, the proposed method (US-PCFG and SS-HMM-
PCFG) were able to successfully generate a chord sequence
with a reasonable number of symbols with natural rhythms.
This demonstrates the effectiveness of the metrical Markov

model of chord onset positions. In US-PCFG, leaf nodes above
different chord symbols were given different labels, whereas
in SS-HMM-PCFG, the leaf nodes above C-major chord and
A-minor chord, which are usually categorized as tonic chords,
were given the same label S1. In addition, in the latter case,
the generated chord sequence had cadences and chord rhythms
that were similar to those of the ground truth. We observed
that the two models had a similar tendency for other melodies
as well (see online supplemental material4). This indicates
that the SS-HMM-PCFG can successfully reflect syntactic
functions and hierarchical structure of chords in the generated
results.

G. Open Problems

The proposed melody harmonization method tends to gen-
erate conservative chord symbols (e.g., C major and G major)
that frequently appear in the training data because they tend
to maximize the posterior probabilities of chords for given
melodies. To increase the diversity and musical attractiveness
of the generated chord sequences, it would be effective to
incorporate prior knowledge about chord patterns (idioms and
phrases) that frequently appear in actual musical pieces into
our MCMC sampler. Another solution is to replace the PCFG
model that splits a non-terminal node into two child nodes
with a tree-substitution grammar (TSG) model that splits
a non-terminal node into two variable-depth subtrees. This
enables us to automatically discover tree-structured patterns
frequently found in chord sequences. We also plan to replace
the generative model of a melody (Markov model) with a deep

4https://pcfgharmonization.github.io/
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Fig. 11. Examples of generated chord sequences. From top to bottom, the input melody, the human-composed chord sequence, and chord sequences generated
by the HMM-based method, the rule-based method, US-PCFG, and SS-HMM-PCFG are shown.

generative model (e.g., recurrent neural network), which is
effective for learning complex dependency in time series.

While our method can capture syntactic functions and the
local structure behind chords, it is still weak in capturing
global structure such as phrase structure. A possible solution
is to use the combinatory categorial grammar (CCG) [44] for
modeling chord sequences. A CCG can explicitly describe the
global syntactic structure (e.g., phrase, clause) by using sym-
bols constructed from the combination of simple categories
of words (e.g., “noun”, “verb”). By inferring the CCG from
the data of chord sequences, it would be possible to directly
analyze the phrase structure in chord sequences. It is also
important to improve the naturalness of chord rhythms. Since
chord rhythms depend on rhythms of melody notes, we plan
to formulate a model of melody note rhythms and integrate it
with our unified model.
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VI. CONCLUSION

This paper has presented a Bayesian melody harmonization
method that aims to generate a chord sequence with natural
rhythms for a given melody5. This method is based on a
unified generative model of a chord sequence and a melody
involving a metrical Markov model describing chord rhythms
and a PCFG model describing the tree structure behind chords.
Experimental results showed that the proposed method out-
performed the conventional HMM-based method in terms of

5The source code of our melody harmonization method is available in the
online supplementary page (https://pcfgharmonization.github.io/).

accuracy of generated chord sequences. We also confirmed that
the semi-supervised learning of the PCFG model is superior to
the completely unsupervised learning, in terms of the ability to
predict tree structures behind chords, and that the HMM-based
initialization of the PCFG model improved the performance of
melody harmonization.

Our next direction is to construct an interactive music com-
position/arrangement system. Interactive systems are useful
for those people who want to incorporate their preference in
the generated music and can go beyond the reach of fully
automated systems. The ability of the proposed model to learn
and represent the grammatical structure of music in a similar
way as humans do is essential for enhancing the directability
of the system, as partly shown in [13]. Through large-scale
user studies we plan to reveal human’s music creation process
from the computational perspective.
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