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Automatic music accompaniment is particularly useful for exercises, rehearsals and personal enjoyment of ensemble music and one-hand piano
performances. As musicians may make errors and want to correct them, or they may want to skip hard parts in the score, the system should allow errors as
well as arbitrary repeats and skips. Detecting such repeats/skips, however, involves a large complexity of search for a player's score position in the entire
score for every input event. Several efficient algorithms have been developed to cope with this problem under practical assumptions used in an online
automatic accompaniment system named "Eurydice". In Eurydice for MIDI instruments, music performance is modeled by a hidden Markov model and
maximum probability estimation is applied to the polyphonic MIDI input to yield an accompanying MIDI output (e.g., orchestra sound). Another version of
Eurydice accepts monaural audio signal input and accompanies to it. Other issues such as treating ornaments, tempo estimation, and accompaniment
algorithms are also discussed.
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1 Introduction

Automatic music accompaniment is a technique which enables machines to accompany hu-
mans in live performance based on a musical score. The technique enables performers to play
ensemble music without human accompanists and extends the acoustics of musical instru-
ments into the area of live electronics [1, 2]. As well as its importance in artistic contexts,
automatic accompaniment created vast demand for use in practice sessions, rehearsals and
for the personal enjoyment of ensemble music, and has therefore become a popular subfield of
music information processing (see Ref. [3] for a dated review, and more recent works [4-10],
to mention a few).

To successfully synchronize accompaniments, real-time estimation of a performer’s score
position, called score following, is required. This is a nontrivial problem since human per-
formances widely vary even if they are based on the same score. For example, the tempo
and its changes, performance mistakes, ornaments, acoustic variations, and noises are typical
sources of uncertainties in music performance. A score-following algorithm must contain a
set of complex rules to correctly identify score positions, and stochastic models such as the
hidden Markov model (HMM) applied to music performance are widely used to construct
score-following algorithms in a principled way.

In music performances during practices, players may make repeats to practice some
sections again or skips to omit some sections. Allowing arbitrary repeats and skips is partic-
ularly important for automatic accompaniment. Repeats and skips in score following were
first discussed in Refs. [5, 11], where only jumps to particular score positions were consid-
ered. Later methods for handling arbitrary repeats and skips were developed in Ref. [12].
Since then, our group has developed techniques to handle arbitrary repeats and skips as
well as performance mistakes and ornaments [12-25]. The main purpose of this paper is to
review the highlights of our work and related solutions. A basic model for music performance
in symbolic (i.e. MIDI) signals is explained in the next section, and the problem of large
computational cost and its solution will be detailed in Sec. 3. An analogous method for
audio score following will be explained in Sec. 4. Issues regarding musical ornaments are
considered in Sec. 5, and tempo estimation and accompaniment algorithms are discussed in
Sec. 6. Conclusions are given in Sec. 7.

2 Stochastic performance model

To construct a score-following algorithm, we first model music performance as a stochastic
process. We consider polyphonic MIDI signals in this and the next sections (audio signals
are considered in Sec. 4). Given a stochastic model that yields the probability of a sequence
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of intended score positions and of generated performed notes based on a score, the score-
following problem can be restated as one of finding the most probable sequence of intended
score positions given a performance signal. HMM is particularly suited for this problem
because it can effectively describe sequential, erroneous, and noisy observations of music
performance, and several computationally efficient inference algorithms for music processing
have been developed [26, 27].

The use of temporal information is important for score following of polyphonic perfor-
mances since the clustering of performed notes into musical events, e.g., chords or arpeggios,
often becomes ambiguous without it. An HMM was proposed to explicitly describe the
temporal information. There are two equivalent representations of the model: one describes
time as a dimension in a state space, and the other is based on a consideration of the output
probability of inter-onset intervals (IOIs). The former representation is explained in the
following. A similar HMM was proposed in Ref. [28, 29] in the context of music/rhythm
transcription, and a preliminary attempt to consider such an HMM for score following was
done in Ref. [12].

Let 7 label a set of notes whose onsets are simultaneous in the score, which will be
called a musical event or a “chord”. The state space of the model is the set of all musical
events in the score, and a state represents an intended musical event 7, for each performed
note indexed by m (m = 1,---, M), where M is the total number of performed notes [25].
The pitch and onset time of the m-th performed note are denoted by p,, and t,,. The music
performance can be modeled as a two-stage stochastic process of choosing the intended
musical events first and then outputting the observed performed notes. The first stage
is described as transitions between states, and the temporal information can be described
as output of 101 dt,, = t,, — t,,_1 at each transition. Assuming that the probability of
choosing the state i,, is only dependent on the previous state as P(iy,|im_1) = ai,, 4, and
the output probability of pitch and IOI is only dependent on the current and the previous
states as P(pm, 0tm|im—1,%m) = bi,,_1i,,(Pm, Otr), the model can be described by an HMM.
The transition probability matrix (a;;); ; describes how players proceed in the score during
performance (Fig. 1), and output probabilities describe how they actually produce performed
notes.

3 Models of arbitrary repeats and skips, and fast Viterbi
algorithm

As shown in Fig. 1, large repeats and skips between score positions can be described by a
transition probability a;; with large |j—i|. Since it is difficult to anticipate all score positions
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Figure 1: Transitions of the HMM for a simple passage and their interpretations [25].

from and to where players make repeats and skips, it is practical to consider arbitrary repeats
and skips, which can be expressed as a;; # 0 for all 7 and j. In this case, all score positions
and transitions must be taken into account at every time, and the computational cost for the
inference is large for long scores. For example, a Viterbi update requires O(N?) complexity,
where N is the number of states, which is too large for real-time processing for N = 500.

There are solutions to reduce the computation cost by using simplified models, one of
which is a uniform repeat/skip probability model, a;; is constant for large |j — i|. It can be
shown that the computational complexity can be reduced to O(DN) when a;; is constant
for j <i—Djorj>i+ Dy (D= Dy+ Dy+1). In practice a value of D between 3 and 10
is sufficient, significantly reducing the complexity. We can generalize the model to an outer-
product HMM, where for large |j — i| a;; is an outer-product of two vectors, while retaining
computational efficiency. Details of the models and analyses of tendencies in repeats and
skips in actual performance data are given in Ref. [25].

Results of measuring the processing time for a Viterbi update are shown in Fig. 2. We
see that the processing time is clearly reduced by the fast Viterbi algorithm for N' = 200, and
remains within a few tens of milliseconds for NV < 10000. Thus, typical concert-size pieces
can be processed without any sensible delay with the proposed score-following algorithm.
Evaluations in Ref. [25] show that repeats and skips are followed within about three chords,
depending on scores, after resumption with the uniform repeat/skip probability model, and
the outer-product HMM improves the result by about one chord.

Proceedings of Meetings on Acoustics, Vol. 21, 035003 (2014) Page 4



Sagayama et al.

10° .
—m— Conventional Viterbi] |
104 | | ~=— Fast Viterbi (D = 20)
—_ - Fast Viterbi (D = 8) | n
[72]
£ 3 .
©
g 10
pt n
2
% 102 a .
§ 1 q A
a 10 i
[ ] N
N
100} (
£ ¢ A
107 10° 10*

Number of chords (states)

Figure 2: Averaged processing time for a Viterbi update [25]. The squares indicate results
using the online version of conventional Viterbi algorithm and the triangles and circles in-
dicate results using the fast Viterbi algorithm. Errors indicate 1o confidence intervals. The
computational environment involved an Intel(R) Core(TM) i5-2540M CPU, with 8 GB of
RAM and the Windows 7 Professional 64-bit OS.

The above technique to derive the fast Viterbi algorithm can also be applied to the
forward and backward algorithms. Since HMM and similar dynamic-programming match-
ing methods are extensively used for information processing, the fast inference algorithms
are useful for other applications. For example, it is applied to music structure analysis in
Ref. [30].

4 Audio score following
A score-following algorithm for audio signals handling arbitrary repeats and skips was pro-

posed by our group in Ref. [23] (see Ref. [16] for a related work). A model similar to the
one used for the symbolic case can be built based on an HMM for audio signals with some
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Figure 3: The score-following result for a clarinet performance with repeats. The gray circle
indicates performed onsets, and the red line indicates the estimated score positions.

differences. First, the output of the signal model consists of acoustic features instead of
symbolic pitches, for which the normalized spectrum of a constant-Q transform [31] can be
used. The output probability is described with a mixture of multivariate Gaussian distri-
butions. Second, since the model outputs such acoustic features for each frame, transitions
between states occur within a constant time shift. This makes a big difference in modeling
note durations compared to the MIDI case. As a simplest choice, we can model durations in
terms of the self-transition probability of each state corresponding to each note in the score.
A more refined model such as a variable duration model or a semi-Markov model could be
used, but typically, the computation cost increases significantly.

Another essential difference is that rests in the score and pauses made by the player
must be carefully treated in the case of audio signals, which can be represented by silence
states. Since there are frequently pauses before repeats and skips, a model with a state
representing such pauses can be constructed. A refined inference algorithm for the model
can also be derived. A score-following result for a clarinet performance with repeats is
illustrated in Fig. 3. A phase reconstruction algorithm for generating accompaniment sound
from a recorded audio file was discussed in Refs. [32; 33]
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5 Models of ornaments for MIDI performance

As is generally known in music practice, musical ornaments such as trills and arpeggios are
somewhat arbitrary and indeterminate, because of the speed of performed notes in such cases
[34, 6]. For an accurate score following of performances with ornaments, indeterminacies
must be properly captured in the performance model. Based on a careful observation of the
realization of ornaments, an extended model of music performance was constructed which
describes the indeterminacies. For example, the variations in speed of ornamental notes are
described with distributions of corresponding IOIs, which are obtained by analyzing actual
performances.

Especially for a complex polyphonic passage, in which several ornaments can be su-
perposed, proper construction of HMM states is also important. States which represent
chord, trill, and short appoggiatura in a general sense were introduced in the model, and a
state-construction algorithm was derived which can be applied for a quite general polyphonic
passage. Detailed discussions on ornaments are given in a paper to appear elsewhere [35].

6 Tempo estimation and accompaniment algorithm

So far we have not discussed tempo. Given a situation where tempo depends on a particular
player and may change during a performance, one must in some way perform tempo estima-
tion in real time. Although a joint model of score position and tempo can in general be used
to simultaneously estimate both, such a model typically necessitates large computational
cost (see, for example, Ref. [8]). To avoid a significant increase of this cost, we alternately
perform tempo estimation and score-position estimation.

Since the tempo is indirectly observed through detected onset times which are subjected
to noise, an estimation based on a stochastic model is used, where the tempo is represented
as a latent variable and the 101 is the visible quantity. A model based on a linear dynamical
system [36, 37] can be used for this. To treat sudden pauses typically made by a player
during practices, the model is extended to represent such pauses as noise sources for the
visible IOI. An efficient tempo estimation can be done with a switching Kalman filter.

Finally, given the information on the current score position and tempo of the perfor-
mance, the accompaniment sound is generated. There are two complementary methods for
accompaniment generation implemented in our system. One is called the “waiting mode” of
accompaniment where the computer waits until the next expected performed note is played
and reacts as soon as it is played. In this way, a sudden tempo change or a sudden pause is
best treated. The other one is called the “non-waiting mode”, where the next performed note
is first anticipated with the estimated tempo and the accompaniment is generated according

Proceedings of Meetings on Acoustics, Vol. 21, 035003 (2014) Page 7



Sagayama et al.

to the prediction. To keep good synchronization, the computer waits when the player gets
behind the accompaniment, and catches up when the player gets ahead the accompaniment,
as performed notes are observed. With the latter mode of accompaniment, delays in the
score following module or the sound control module can be more appropriately treated, and
the accompaniment can lead the player, which is preferable in some instances.

Two demonstration videos of our “Eurydice” accompaniment system presented in the
Automatic Accompaniment Demonstration Concert at the 167th Meeting of the Acoustic
Society of America can now be watched on the Internet [38].

7 Discussions and conclusions

In this paper, we have reviewed the development of automatic music accompaniment sys-
tems including recent progress in light of their use for music practice and personal enjoyment.
Based on a stochastic method, basic techniques, especially score following, have been devel-
oped for music performances having mistakes, arbitrary repeats and skips, with convincing
results. The developed technique to reduce the computation cost for score-position estima-
tion of music performance with these properties can be applied for other applications where
alignment between observed sequences (e.g., arbitrary performance, speech, etc.) and their
corresponding documents (e.g., score, text, etc.) involves both local deformations (e.g., mis-
takes and added noise) and global deformations (i.e., transitions) in the observed sequence.

For future directions, the generation of expressive accompaniments would be a next
challenge. Here, how to reflect player’s, as well as general, musicality in the accompaniment
is an interesting problem. Adaptation of the accompaniment generation using the rehearsal
data would be important as well [39, 7].
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