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Abstract—Statistical models of musical scores play an impor-
tant role in various tasks of music information processing. It has
been an open problem to construct a score model incorporating
global repetitive structure of note sequences, which is expected
to be useful for music transcription and other tasks. Since
repetitions can be described by a sparse distribution over note
patterns (segments of music), a possible solution is to consider a
Bayesian score model in which such a sparse distribution is first
generated for each individual piece and then musical notes are
generated in units of note patterns according to the distribution.
However, straightforward construction is impractical due to the
enormous number of possible note patterns. We propose a
probabilistic model that represents a cluster of note patterns,
instead of explicitly dealing with the set of all possible note
patterns, to attain computational tractability. A score model is
constructed as a mixture or a Markov model of such clusters,
which is compatible with the above framework for describing
repetitive structure. As a practical test to evaluate the potential
of the model, we consider the problem of singing transcription
from vocal f0 trajectories. Evaluation results show that our model
achieves better predictive ability and transcription accuracies
compared to the conventional Markov model, nearly reaching
state-of-the-art performance.

I. INTRODUCTION

Computational models of musical scores, sometimes re-
ferred to as music language models, play a vital role in
various tasks of music information processing [1]–[6]. For
automatic music transcription [7], for example, a musical
score model is necessary to induce an output score to be
an appropriate one that respects musical grammar, style of
the target music, playability, etc. Conventional musical score
models include variants of Markov models [8], hidden Markov
models (HMMs) and probabilistic context-free grammar mod-
els [9], recurrent neural networks [10], and convolutional
neural networks [11]. These models are typically learned
supervisedly and the obtained generic score model is applied
to transcription of all target musical pieces, in combination
with an acoustic model and/or a performance model.

A musical piece commonly consists of groups of musical
notes that are repeated several times, and detecting repeated
note patterns has been a topic of computational music analysis
[12]. Repetitive structure can complement local sequential
dependence of notes, on which conventional score models
have focused, and thus can be useful for transcription. This
is because if the repetitive structure can be inferred correctly,
one can recover part of the score or can account for timing
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Fig. 1. The proposed sequential pattern model for musical scores. (a) A PSP
generates note patterns for a bar based on a metrical Markov model (rhythm
probability) and a distribution of pitches defined for each beat position (pitch
probability). (b) A generative process of musical scores with multiple PSPs;
for each bar a PSP is chosen according to a mixture/Markov model. See
section III for details. (For clear illustration, the 6/8 time in this example is
different from the 4/4 time considered in the main text.)

deviations, acoustic variations, and other types of “noise” in
performances. To realize this scenario, we need a score model
that induces repetitions in generated scores. Since repetitive
structure is a global feature, it is challenging to construct a
computationally tractable model with such a property.

A framework for constructing a score model with repetitive
structure has been proposed in [13]. The idea is to consider
a distribution (or a Markov model) over a set of possible
note patterns and implicitly represent repetitive structure with
sparseness of the distribution. A note pattern is defined here
as a subsequence of musical notes; if a piece consists of
a small number of note patterns then it has repetitions and
vice versa. The model is described as a Bayesian extension
of a Markov model of note patterns where the Dirichlet
parameters of the prior distributions are assumed to be small
to induce repetitions. In addition, to deal with approximate
repetitions (i.e. repetitions with modifications), which are com-
mon in music practice [14], an additional stochastic process
of modifying patterns was incorporated. In this framework,
an individual score model is learned unsupervisedly in the
transcription process for each input signal, in contrast to the
above supervised learning scheme. That study focused on
monophonic music and only rhythms were modelled, and it
has been shown that the framework is indeed effective for
music transcription.



Although it is theoretically possible to extend this frame-
work for more general forms of music, including pitches and
multiple voices, the model becomes so large that computa-
tional tractability will be lost. First, with Ω ∼ O(10–102)
unique pitches and ` notes, the number of possible pitch
patterns is Ω`, which soon becomes intractable as ` increases.
Second, by adding the process of modifying patterns, the
complexity increases further: with Λ unique patterns one
should consider Λ2 possible ways of modification in general.
Third, joint modelling of pitches and rhythms further increases
the size of the state space.

In this study, we propose a new approach for modelling note
patterns including pitches and rhythms that is compatible with
the above framework for describing repetitive structure. To re-
alize this, we treat a set of patterns related by modifications as
a cluster, named probabilistic sequential pattern (PSP), without
explicitly dealing with the set of all possible patterns (Fig. 1).
A PSP is formulated so that it can naturally accommodate
insertion, deletion, and substitution of notes as modifications
of patterns. We construct score models based on a mixture
(possibly with a Markov structure on the mixture weights) of
such PSPs and its Bayesian extension. As a practical problem,
we consider the problem of singing transcription of vocal f0
trajectories [15], [16].

The main contributions of this study are:
• Construction of computationally tractable score models

based on note patterns; a Bayesian framework for describ-
ing approximate repetitive structure of musical scores.

• Our model achieves better predictive ability and transcrip-
tion accuracies than the conventional Markov model.

An additional contribution is proposing a framework for inte-
grating a note-level score model and a beat-level f0 model.
Such a framework is nontrivial due to different time units
in acoustic/f0 signals and musical scores and has not been
realized in most previous studies; in some studies frame-level
musical score models have been considered [17], [18], which
cannot properly describe musical rhythms, and in other studies
an unrealistic situation that the number of musical notes is
known in advance has been assumed [19].

The rest of the paper is organized as follows. In the next sec-
tion, we review a simple Markov model generating melodies
(pitches and rhythms) and its extension for use in singing
transcription. In section III, we formulate our PSP model
and explain an inference method. Numerical experiments and
evaluations are presented in section IV. The last section is
dedicated to conclusions and discussion.

II. MELODY MARKOV MODEL

Here we specify the problem of singing transcription con-
sidered in this study. A simple model for statistical singing
transcription is presented as a baseline method.

A. Singing Transcription from F0 Trajectories

Singing transcription is a task of converting a singing voice
signal into a musical score representation [19], [20]. Here, we
consider a situation that a singing-voice f0 trajectory is given
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Fig. 2. Singing transcription from a vocal f0 trajectory and the corresponding
generative process.

in advance as well as the information about the location of
beats and bar onsets (downbeats) (Fig. 2). The former can be
estimated by using an f0 estimation method for singing voices
(e.g. [21]) and the latter can be estimated by a beat tracking
method (e.g. [22]). In the following, time frames are indexed
by t ∈ {1, . . . , T} and score times in units of 16th notes are
indexed by τ ∈ {τs, . . . , τe}, where T represents the signal
length and τs and τe respectively denote the first and the last
beats. For each score time τ , its relative position to the bar
onset is denoted by [τ ] ∈ {0, . . . , B − 1} and called the beat
position. The symbol B denotes the number of beats in each
bar and it is fixed to B = 16 in what follows, as we only
consider pieces in 4/4 time for simplicity. Each score time τ
is associated with a time frame denoted by t(τ).

The input signal is a sequence of f0s denoted by X =
(xt)

T
t=1. The output is a musical score represented as a

sequence of pitches and onset score times Y = (pn, τn)Nn=1,
where N is the number of notes and pn is the n th note’s pitch
in units of semitones. Note that the number N is unknown in
advance and must be estimated from the input signal.

In the generative modelling approach, we first construct a
score model that yields the probability P (Y ) and combine
it with an f0 model that yields P (X|Y ). The output score
can be obtained as the one that maximizes the probability
P (Y |X) ∝ P (X|Y )P (Y ).

B. Score Model

As a minimal model, we treat pitches and rhythms indepen-
dently and consider a Markov model for pitches and a metrical
Markov model [23], [24] for onset score times. It is described
with the initial and transition probabilities for pitches

P (p1 = p) = χini
p , P (pn = p | pn−1 = p′) = χp′p (1)

and those for onset score times

P (τ1 = τ) = ψini
[τ ], P (τn = τ | τn−1 = τ ′) = ψ[τ ′][τ ]. (2)

In the transition probability matrix for onset score times, we
have implicitly assumed that the maximum interval between
adjacent onsets is the bar length B and when [τn] ≤ [τn−1]
we interpret that a bar line is crossed between these notes.

To apply the above note-level score model for singing
transcription, one must compare all possible segmentations
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of the input signal into a sequence of notes. To enable this,
we reformulate the score model as an equivalent form that
is described at the beat level. Specifically, the above model
is embedded in a type of semi-Markov model called the
residential time Markov model [25] in which a counter variable
is introduced to memorize the residual duration of a note. In
this beat-level melody Markov model (Fig. 3), all variables are
defined for each beat; the pitch and the counter variable are
denoted by pτ and cτ ∈ {1, . . . , B}. The counter variables are
generated as

P (cτs = c) = ψ[τs][τs+c], (3)
P (cτ |cτ−1) = δcτ−1(cτ+1) + δcτ−1 1ψ[τ ][τ+cτ ], (4)

where δ denotes the Kronecker delta. Here, cτ−1 = 1 indicates
that there is an onset at score time τ and the corresponding
note has a length cτ ; otherwise the pitch remains constant.
Thus, the generative process for pitches is described as

P (pτs = p) = χini
p , (5)

P (pτ = p | pτ−1 = p′) = δcτ−1 1χp′p + (1− δcτ−1 1)δpp′ . (6)

C. F0 Model and Inference Method

The f0 model describes a stochastic process in which
observed f0s are generated from a given score. As a minimal
model, we define the output probability for each beat as

P (xt(τ), . . . , xt(τ+1)−1 | pτ ) =

t(τ+1)−1∏
t′=t(τ)

Pf0(xt′ |pτ ), (7)

where we have assumed that each frame has independent and
identical probability. It is further assumed that the probabilities
Pf0(x|p) for different p s share the same functional form:

Pf0(x|p) = F (x− p) (8)

for some distribution F . The distribution of f0 deviations
(x − p) extracted from annotated f0 data [26] as well as
its best fit Cauchy and Gaussian distributions are shown in
Fig. 4. The width of the best fit Cauchy distribution is 0.32
(semitones) and the standard deviation of the best fit Gaussian
is 0.44 (semitones). We see that the empirical distribution in
the data is long-tailed and skewed, and the Cauchy distribution
is better fitted than the Gaussian. As in a previous study [16], a
Cauchy distribution is used as the distribution F in this study.
One would benefit from using a more elaborated distribution
incorporating the skewness for improving the transcription
accuracy. On the other hand, we have confirmed that the
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transcription accuracy is not very sensitive to the value of the
width parameter for the Cauchy distribution.

Given musical score data, one can estimate parameters of
the score model by the maximum-likelihood method. Once the
model parameters are given, one can estimate the score from
an input signal by maximizing the probability P (p, c |X) ∝
P (X|p, c)P (p, c), where p = (pτ ) and c = (cτ ). This can be
computed by the standard Viterbi algorithm [27]. Note that, by
looking at the obtained counter variables, one can determine
the most likely sequence of onset score times as well as the
number of notes in the output score.

III. PROBABILISTIC SEQUENTIAL PATTERN MODEL

We here formulate probabilistic sequential pattern (PSP)
models. First, we formalize the idea of representing note
patterns related by modifications as a PSP. Second, we explain
a score model constructed by using multiple PSPs. In the last
subsection, inference methods are explained.

A. Probabilistic Sequential Patterns

For definiteness, a subsequence of notes spanning a bar
length is considered as a note pattern in this study. This can be
represented as a segment (pi, bi)

I
i=1 where bi denotes the beat

position of the i th note satisfying 0 ≤ b1 < · · · < bI < B.
Instead of considering a distribution over the set of all possible
such patterns explicitly, we consider a probabilistic model that
stochastically generates note patterns. The onset beat positions
are generated in the same way as the metrical Markov model:

P (b1) = ρinib1 , P (bi|bi−1) = ρbi−1bi , (9)

which are referred to as rhythm probabilities. Next, pitches
are generated conditionally on the beat position as

P (pi|bi) = φbipi , (10)

which are referred to as pitch probabilities.
This model, named a PSP, can be regarded as a generaliza-

tion of a note pattern (Fig. 5). This is because in the limit of
binary probabilities, i.e. all entries of ρini, ρ, and φ are either
0 or 1, the model can generate only one note pattern with
probability 1. As long as these probability distributions are
sparse, a PSP can effectively generate only a limited number
of note patterns. Furthermore, these note patterns tend to be
related to each other by certain modifications: the metrical
Markov model can naturally describe deletions and insertions
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Fig. 5. Examples of note patterns generated by PSPs. In (b), relevant
probabilities are marked with a bold green box. (For simpler illustration, the
6/8 time is used here instead of the 4/4 time considered in the text.)

and the pitch probability can express pitch substitutions. The
number of parameters of a PSP is B(B+1+Ω), which is much
smaller than the number of unique note patterns as discussed
in the Introduction. Note also that pitches and rhythms are not
independently generated in a PSP so that it can be a more
precise model than the melody Markov model in general.

B. PSP-Based Score Models
1) PSP Mixture Model: The real advantage of considering

PSPs becomes clear when we consider multiple PSPs as a
generative model of musical scores. The simplest model is
described by K PSPs parameterized by (ρ

(k),ini
b , ρ

(k)
b′b , φ

(k)
bp )Kk=1

and mixture probabilities σk obeying σ1 + · · ·+ σK = 1. The
generative process is described as follows.

1) When a new bar is entered a component k is drawn from
the mixture probability.

2) Pitches and onset beat positions in that bar are generated
by the k th PSP.

3) Once an onset beat position bi such that bi ≤ bi−1 is
drawn, we move to the next bar and continue the process.

To put this into equations, let m = 1, . . . ,M be an index for
bars and n = 1, . . . , Nm be an index for note onsets in each
bar m. The pitch and onset beat position of the n th note in
the m th bar are denoted by pmn and bmn. For each bar m, a
PSP km is chosen according to the mixture probability

P (km = k) = σk. (11)

Beat positions bm2, . . . , bmNm are generated by

P (bm(n+1) = b | bmn = b′, km = k) = ρ
(k)
b′b . (12)

The first beat position is generated by

P (b(m+1)1 = b | bmNm = b′, km = k) = ρ
(k)
b′b , (13)

except for the first bar, for which case the following holds:

P (b(m=1)1 = b | k(m=1) = k) = ρ
(k),ini
b . (14)

Pitches are generated as

P (pmn = p | bmn = b, km = k) = φ
(k)
bp . (15)

We call this model a PSP mixture model.
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Fig. 6. In the Bayesian extension of the PSP model, an individual PSP
model is generated for each musical piece, which is assumed to have
sparse distributions to induce repetitions. (For simpler illustration, transition
probabilities for PSPs are illustrated as a mixture distribution and the 2/4 time
is used here instead of the 4/4 time considered in the text.)

2) Markov PSP Model: We can easily extend the PSP mix-
ture model by introducing a Markov structure on the mixture
weights. Instead of the mixture probability, we consider initial
and transition probabilities for the PSP components:

P (k1 = k) = σini
k , P (km+1 = k′ | km = k) = σkk′ , (16)

P (end| kM = k) = σk end, (17)

where the last probability is used to end the generative process.
The probabilities obey the following normalization conditions:

1 =
∑
k′

σini
k′ =

∑
k′

σkk′ + σk end (∀k). (18)

We call this model a Markov PSP model.
The Markov PSP model has advantages over the PSP

mixture model. Since the sequential structure of note patterns
is incorporated, it can potentially describe repetitive structure
better. In addition, there is a nice theoretical property that
with a sufficiently large number of PSPs it can completely
reproduce a given piece of music. We thus focus on Markov
PSP models in the following and simply call them PSP models.

3) Bayesian Extension: To apply the Bayesian framework
for describing repetitive structure explained in the Introduc-
tion, we extend the PSP model to a Bayesian model by putting
conjugate priors on the model parameters:

σini ∼ Dir(αini
σ σ̄

ini), σk ∼ Dir(ασσ̄k), (19)

ρini ∼ Dir(αini
ρ ρ̄

ini), ρb ∼ Dir(αρρ̄b), (20)

φb ∼ Dir(αφφ̄b), (21)

where we have introduced the notation σini = (σini
k ), σk =

(σkk′), etc. and Dir( · ) denotes a Dirichlet distribution. The
concentration parameters αini

σ , ασ , etc. are chosen to be small
to induce sparse distributions.

The above generative process can be interpreted as a process
of choosing a set of note patterns like motives for composing
a particular piece (Fig. 6). Eq. (19) says that a limited set
of PSPs are chosen, which induces repetitive structure for the
generated piece. Eqs. (20) and (21) induce each PSP to become
more specific in both rhythm and pitch, which enhances the
repetitive structure.



C. Inference Methods for Transcription

In the application of the PSP model to music transcription,
there are three inference problems: (i) parameter estimation for
a pre-trained (generic) score model; (ii) Bayesian inference of
an individual score model given an input signal; and (iii) final
estimation of the output score for the input signal. To enable
inference, we should reformulate the PSP model as a beat-
level model. As explained in Appendix A, the note-level and
beat-level Markov PSP models can be reformulated in forms
of Markov models.

Unlike conventional score models and the model studied in
[13], PSPs are supposed to be pre-trained in an unsupervised
manner. As explained in section III-C, the model parameters
can be learned by the maximum-likelihood method, similarly
as a Gaussian mixture model (GMM). Similarly as the variance
of each component Gaussian of a GMM becomes smaller as
we increase the number of mixtures, the perplexity of each PSP
becomes smaller as we increase the number of PSPs, leading
to each PSP generating a more specific subset of note patterns.
Therefore, a PSP model will spontaneously find clusters in the
space of note patterns that best explain the training data. By
varying the number of PSPs K, we can control the preciseness
of the model, which is in general in a trade-off relation with
the computational cost for inference.

Writing θ = (σini
k , σk′k, ρ

(k),ini
b , ρ

(k)
b′b , φ

(k)
bp ) for the model

parameters and Y for the training score data, the optimal
θ is estimated by maximizing the likelihood P (Y |θ). We
can apply the expectation-maximization (EM) algorithm [28]
for the maximum-likelihood estimation, by regarding (km)
as latent variables. Update equations for the EM algorithm
are provided in Appendix B. The pre-trained parameters are
denoted by θ̄ = (σ̄ini

k , σ̄k′k, ρ̄
(k),ini
b , ρ̄

(k)
b′b , φ̄

(k)
bp ).

The first step of singing transcription by the proposed
method is to carry out Bayesian inference for learning an
individual score model for the input signal. We can apply the
Gibbs sampling method for inferring the parameters θ given
their pre-trained values θ̄ and the input signal X . Denoting
the latent variables as Z = (k, b,p) where k = (km),
b = (bmn), and p = (pmn), we sample from the distribu-
tion P (θ, Z |X, θ̄) ∝ P (X|Z, θ)P (Z|θ)P (θ|θ̄). For sampling
the latent variables, the forward filtering-backward sampling
method can be applied. Then the parameters can be sampled
from the posterior Dirichlet distributions. In practice, after a
certain number of Gibbs samplings, we choose the sampled
parameters θ∗ that maximize the probability P (X|θ∗).

The final step of transcription is to estimate the output
score Y that maximizes the probability P (Y |X, θ∗). As in
the case of the melody Markov model, this can be done with
the Viterbi algorithm. We can simply apply the Markov-model
formulation of PSP models explained in Appendix A.

IV. EVALUATION

We conduct numerical experiments to compare the PSP
model and the melody Markov model. First, they are evaluated
as musical score models in terms of perplexity. Next, they are
compared in terms of transcription accuracy using real data.

TABLE I
TEST-DATA PERPLEXITIES.

Model Test-data perplexity

Melody Markov model 43.9
PSP model (K = 10) 46.9
PSP model (K = 30) 36.1
PSP model (K = 50) 32.8

A. Setup

We use the popular musical pieces in the RWC database
[26], [29] for evaluation. For the sake of simplicity in data
preparation, we only use pieces that are in 4/4 time without
intermediate changes of time signature and remove pieces that
have more than two voices in the vocal part or for which
the beat and f0 annotation data contain significant errors. 63
pieces remained according to these criteria and are used as
test data. The training data consist of the other pieces in the
RWC database, 193 pieces by the Beatles, and 135 other pop
music pieces, which have no overlap with the test data. To
alleviate the problem of data sparseness, the training data is
augmented: all pieces are transposed by intervals in the range
of [−12, 12] semitones and used for training.

All the concentration parameters of the PSP models are set
to unity. For pre-training PSP models, the EM algorithm is run
until convergence. For Bayesian inference, Gibbs sampling is
iterated 100 times. In general, we can introduce a parameter
to weight the relative importance of the score model and the
f0 model. Formally, the logarithm of the f0 output probability
in Eq. (7) is multiplied by a factor w during inference. We use
w = 0.1 for Bayesian inference and w = 1 in other places,
which have been roughly optimized in a preliminary stage.

B. Evaluation of Score Models

After parameters of the PSP model are learned with the
training data, the perplexity on the test data is computed. The
results for PSP models with K = 10, 30, and 50 PSPs and
for the melody Markov model are given in Table I. We see
that the test-data perplexity decreases as K increases and the
cases K = 30 and 50 outperform the melody Markov model.
This indicates that even without a Bayesian extension the PSP
model can be useful as a score model with higher predictive
ability than the melody Markov model.

Looking at the learned parameters of the PSP models reveals
what aspects of musical note sequences they capture with
different model sizes. When the model size is small (e.g.
K = 5), each PSP represents note patterns in different pitch
ranges. For K = 10, the model begins to learn the structure
of musical scales (Fig. 7(a)). With this level of model size, no
significant correlation between the probabilities of pitches and
rhythms is learned: the pitch probability is almost independent
of beat positions and the metrical transition probability is the
statistical average of all note patterns. For a larger K (e.g.
K = 50), each PSP begins to represent a more specific cluster
of note patterns. Both the probabilities of pitches and rhythms
become sparser in this case (Fig. 7(b)).
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Fig. 7. Examples of learned PSPs. Learned probabilities are visualized for a
typical PSP in the case of (a) K = 10 and (b) K = 50. The left and right
boxes represent transition probabilities in Eq. (9) and the pitch probability in
Eq. (10). The vertical axis indicates the current beat position and the horizontal
axis indicates the next beat position for the rhythm probability and the output
pitch for the pitch probability.

TABLE II
AVERAGES AND STANDARD ERRORS OF ERROR RATES EVALUATED ON THE
REAL DATA. THE P-VALUE MEASURES STATISTICAL SIGNIFICANCE OF THE

DIFFERENCE BETWEEN EACH MODEL AND THE BAYESIAN PSP MODEL
WITH K = 30, WHICH IS CALCULATED FROM THE DISTRIBUTION OF

PIECE-WISE DIFFERENCES IN ERROR RATES .

Model Error rate (%) p-value

Melody Markov model 34.2± 1.6 < 10−5

PSP model (K = 10) 31.0± 1.7 < 10−5

PSP model (K = 30) 30.3± 1.7 < 10−5

Bayesian PSP model (K = 10) 30.4± 1.6 < 10−5

Bayesian PSP model (K = 30) 28.6± 1.6 —
HHSMM [16] 27.6± 1.7 5.7× 10−3

C. Evaluation of Transcription Accuracy

Next we evaluate the PSP model and the melody Markov
model in terms of transcription accuracy using real data of f0
trajectories. We use the annotated f0 and beat tracking data for
the RWC data [26] as input. For the PSP models, we compare
the cases K = 10 and K = 30 and both cases of using and
not using Bayesian inference. As an evaluation measure, a
beat-level error rate of estimated pitches is used.

The average error rates in Table II show that the PSP
models significantly outperform the melody Markov model.
For both K = 10 and 30, the Bayesian extension yields better
results, even though the difference is slight for K = 10.
To see the effect of the PSP model in more detail, we plot
the improvement of error rates for each piece for the case
K = 30 (Fig. 8). We see that for all pieces except one the
non-Bayesian PSP model improves the error rate. The piece for
which the PSP model has a worse error rate (piece ID 7/RWC
No. 16) has an f0 trajectory that deviates significantly from
the musical score. For most pieces the Bayesian PSP model
further improves the error rate, but it sometimes yields a worse
error rate. This implies the possibility of further improving the
result if we are able to adjust the parameters (e.g. concentration
parameters and the width parameter of the f0 model) for
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Fig. 8. Improvements in the error rate compared to the melody Markov model.

individual signals. For reference, the error rate for a state-of-
the-art model [16] is also shown in Table II, which is slightly
better than the best case for the PSP model. This result is
encouraging given that the compared model has a much more
elaborated f0 model [16], which can be incorporated into the
present model in principle.

Transcription results for an example piece (piece ID
32/RWC No. 55) are shown in Fig. 9 together with the ground
truth. We see that the repetitive structure in the ground-truth
data is better reproduced in the transcription by the Bayesian
PSP model than the other two cases. We can find some
incomplete repetitions of the first and third bars, which lead to
transcription errors in this example. This shows the potential
of the Bayesian PSP model to capture approximate repetitions,
which often appear in other pieces. Musical naturalness is
also improved by the Bayesian PSP model, as we can see
from the absence of out-of-scale notes that are present in the
transcriptions by the other methods. The example also reveals
a limitation of the present model that it is hard to recognize
repeated notes, as in the first and fifth bars. To solve this
problem, it would be necessary to incorporate some feature,
like the spectral flux or the magnitude of percussive spectral
components, that can indicate locations of onsets.

V. CONCLUSION

We have formulated a probabilistic description of musical
note patterns named probabilistic sequential pattern (PSP) and
constructed musical score models that generate note sequences
in units of PSPs. The model enables a statistical description
of repetitive structure through a Bayesian extension. We have
confirmed that even with a moderate number of PSPs (e.g.
K = 30), the PSP model yields better test-data perplexities
and transcription accuracies than the conventional Markov
model. The PSPs can be learned unsupervisedly and auto-
matically capture aspects of music that provide more relevant
information depending on the model size. Within the range
of model sizes we studied, first the pitch range is captured,
second musical-scale structure, and then more specific patterns
in which pitches and rhythms are correlated.

The description of the PSP models given here is a minimal
one; several ways of extension are expected to improve the
models. First, whereas it is interesting that the PSP model
spontaneously learns the structure of key/musical scale, intro-
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Fig. 9. Example transcription results (RWC No. 55).

ducing transposition invariance in the model can lead to more
efficient learning, leading to a model in which PSPs focus on
clustering note patterns in one key. Second, a limitation of the
current model that sequential dependence between succeeding
pitches is not explicitly incorporated can be overcome by an
autoregressive extension of the pitch probability.

For further improving the accuracy of singing transcription,
several directions of model adaptation would also be effective.
To adapt the f0 model for individual singers, one can infer the
parameters, especially the width parameter, in a Bayesian man-
ner [30]. We have also observed that the optimal values of the
concentration parameters are different for individual pieces.
Extension to a hierarchical Bayesian model for inferring these
parameters is thus another possibility.

The present model can be applied to other tasks including
automatic composition and arrangement. Extension for poly-
phonic music is of great importance for extending the appli-
cation of the approach, which is currently under investigation.
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APPENDIX

A. Markov PSP Models Formulated as Markov Models

We first formulate a Markov PSP model as a Markov model.
We introduce stochastic variables (kn, bn, pn) that are defined
for each note n (indexed throughout a piece). The initial and
transition probabilities are

P (k1, b1, p1) = σini
k1 ρ

(k1),ini
b1

φ
(k1)
b1p1

, (22)

P (kn, bn, pn | kn−1, bn−1, pn−1)

=

{
δknkn−1 (bn > bn−1)
σkn−1kn (bn ≤ bn−1)

}
· ρ(kn−1)
bn−1bn

φ
(kn)
bnpn

. (23)

This reproduces the complete-data probability for the Markov
PSP model.

A Markov PSP model can be represented as a beat-level
score model by using the same framework as in section
II-B. We define variables (kτ , pτ , cτ ) for each score time
τ ∈ {τs, . . . , τe}. The initial and transition probabilities are
then given as

P (kτs = k, pτs = p, cτs = c) = σini
k ρ

(k)
[τs][τs+c]

φ
(k)
[τs]p

(24)

P (kτ = k, pτ = p, cτ = c | kτ−1 = k′, pτ−1 = p′, cτ−1 = c′)

=

{
δk′k ([τ ] 6= 0)
σk′k ([τ ] = 0)

}
·
{
δc(c′−1)δpp′ (cτ−1 > 1)

ρ
(kτ )
[τ ][τ+c]φ

(kτ )
[τ ]p (cτ−1 = 1)

}
.

(25)

B. EM Algorithm for Markov PSP models

Readers are reminded the notation introduced in sections
III-B and III-C. Update equations for the EM algorithm can be
derived by differentiating the following function with respect
to θ with constraints for normalizations [28]:

F = −
∑
K

P (K|B,P , θ′) lnP (K,B,P , θ), (26)

where θ′ denotes the parameters before an update and we have
introduced variables B = (bl) and P = (pl) representing the
training data consisting of multiple musical scores indexed by
l, and K = (kl) is the corresponding mixture variable. The
results are summarized as follows:

σini
k =

1

λ

∑
l

P (kl1 = k | bl,pl, θ′), (27)

σkk′ =
1

λk

∑
l,m

P (klm = k, klm+1 = k′ | bl,pl, θ′), (28)

ρ
(k)
bb′ =

1

λkb

∑
l,m,n

δbblmnδb′blm(n+1)
P (klm = k | bl,pl, θ′), (29)

φ
(k)
bp =

1

ξkb

∑
l,m,n

δbblmnδpplmnP (klm = k | bl,pl, θ′). (30)

Here, λ, λk, λkb, and ξkb are normalization constants.
In the above equations, the relevant probabilities

P (klm | bl,pl, θ′) and P (klm, k
l
m+1 | bl,pl, θ′) can be



computed by the forward-backward algorithm. Defining the
forward and backward variables and an additional variable as

αlm(k) = P (klm = k, bl1:m,p
l
1:m |θ′), (31)

βlm(k) = P (bl(m+1):Ml
,pl(m+1):Ml

| klm = k, θ′), (32)

Φ′klm = P (blm,p
l
m | klm = k, θ′) =

Nm∏
n=1

ρ
′(k)
blmnb

l
m(n+1)

φ
′(k)
blmnp

l
mn
,

(33)

the forward and backward algorithms go as

αl1(k) = σ′inik Φ′kl1, (34)

αlm(k) =
∑
k′

αl(m−1)(k
′)σ′k′kΦ′klm, (35)

βlMl
(k) = σ′k end, (36)

βlm(k) =
∑
k′

σ′kk′Φ
′
k′l(m+1)βl(m+1)(k

′). (37)

Then we have

P (klm = k | bl,pl, θ′) ∝ αlm(k)βlm(k), (38)

P (klm = k, klm+1 = k′ | bl,pl, θ′)
∝ αlm(k)σ′kk′Φ

′
k′l(m+1)βl(m+1)(k

′), (39)

where the normalization factor can be computed as
P (bl,pl |θ′) =

∑
k αlMl

(k)σ′k end.
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