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Abstract. For the purpose of quantitatively characterising polyphonic
music styles, we study computational analysis of some traditionally recog-
nised harmonic and melodic features and their statistics. While a direct
computational analysis is not easy due to the need for chord and key
analysis, a method for statistical analysis is developed based on rela-
tions between these features and successions of pitch-class (pc) intervals
extracted from polyphonic music data. With these relations, we can ex-
plain some patterns seen in the model parameters obtained from classical
pieces and reduce a significant number of model parameters (110 to five)
without heavy deterioration of accuracies of discriminating composers in
and around the common practice period, showing the significance of the
features. The method can be applied for polyphonic music style analyses
for both typed score data and performed MIDI data, and can possibly
improve the state-of-the-art music style classification algorithms.
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1 Introduction

Harmonic and melodic features of polyphonic music have long been recognised
to characterise music styles in and around the common practical period [1-3]. A
quantitative and computational method of analysing these features would yield
applications such as music style/genre recognition. However, a direct analysis
is not easy because it requires chord and key recognition techniques, which are
still topics of developing research [4,5]. Music style/genre classification has re-
cently been gathering attentions in music information processing (e.g. [6-11]),
but there is still much room for researches in incorporating/relating and tradi-
tional knowledge in music theory and musicology to computational models. How
to extract effective features from a generic polyphonic music data including per-
formed MIDI data with temporal fluctuations of notes is also an open problem.
In this study, we relate four traditionally recognised features of polyphonic music
to computationally extractable elements of generic polyphonic MIDI data and
develop a method for statistical analysis based on these elements.



2 Polyphonic Features and Successions of PC Intervals

We list four commonly studied features of polyphonic tonal music regarding
harmony and melody [1-3], which will be called polyphonic features:

F1 Dissonant chords and motions: Use of dissonant chords and motions is
generally more severely constrained in older music.

F2 Non-diatonic motions: These include successive semi-tone-wise motions
and a succession of major third, etc. and characterise music styles.

F3 Modulations: The type and frequency of modulations characterise com-
posers and periods.

F4 Non-harmonic notes: Their usage and frequency characterise composers
and periods.

In order to study these features efficiently for generic music data, we only con-
sider intervals of the pitch classes (pcs) and disregard other elements including
durations as the subject of analysis. We assume that the data is represented as a
sequence of integral pitches (with the identification of enharmonic equivalents)
ordered according to their onset times. If there are several notes with simulta-
neous onset times, we prescribe that they can be ordered in any way. Any data,
either typed scores or recorded performances, given in MIDI format can be used.
The sequence of pc intervals is obtained by applying the modulo operation of
divisor 12 and then taking intervals. Because data points with a zero pc interval
express little about the polyphonic features, they are dropped and we have a
reduced sequence of pc intervals denoted by = (2,)N_; (z,, = 1,---,11).

A dissonant interval in a chord can be expressed by a pc interval z =
1,2,6,10,11 within the chord. Since only tritone is a definite dissonant inter-
val in a melodic motion with the identification of enharmonic equivalents, =z = 6
is the only direct indication of a dissonant motion. Based on these facts, the
distribution of pc intervals is used to characterise music styles in Ref. [6].

Extending this basic result, more abundant information on the polyphonic
features can be extracted from the successions of pc intervals (hereafter PCI suc-
cessions). For example, a chord containing G, B, and F could be represented by
a succession (F,G,B), and correspondingly, (2,4) in the sequence of pc intervals.
The tritone is implicit as a pc interval but appears indirectly as a composite in-
terval of 244 = 6. A similar case appears in an indirect melodic motion involving
a tritone and in false relations involving a tritone. These cases be generalised to
a succession of two pc intervals (@, z,41) with x, + z,+1 = 1,2,6,10,11.

A diatonic motion of pitches can be defined as a sequence of pitches which
can be embedded in a diatonic (or major) scale, and a non-diatonic motion is
defined conversely. Any pc interval can result from a diatonic motion: A pc
interval 1 can correspond to m2! (we express this as 1 — m2), and similarly,
2 —-M2,3—>m3,4— M3,5— P4, 6 - a4,d5, 7 — P5, 8 — m6, 9 — M6,
10 — m7, 11 — M7 . By contrast, certain successions appear only in non-diatonic

1 We use abbreviations for diatonic intervals such as m2 is minor second, M2 is major
second, P4 is perfect fourth, a4 is augmented fourth, d5 is diminished fifth, etc.



Table 1. Classes of successions of two pc intervals and their relation with the poly-
phonic features.

Label Name Member

Succession to tritone Polyphonic Related
Cl semitone/whole tone {(=,9)ly=6,1,11,2,10} feature class(es)
C2 Indirect octave {(z,y)|x+y=0 mod 12} F1 C1, C3
Indirect tritone/ {(z,9)] F2 C4
C3 semitone/whole tone x+y=6,1,11,2,10 mod 12} F3 C4
C4 Non-diatonic succession Given in the text F4 C2, C5

C5 Major/minor triad Given in the text

motions. With some calculation, we can find all such “non-diatonic successions”
(Inaz71+1) as (lal)v (153)7 (158)7 (1’10)a (2711)7 (371)7 (3a8)7 (454)7 (459)7 (4a11)a
(8,1), (8,3), (8,8), (9,4), (9,11), (10,1), (11,2), (11,4), (11,9), (11,11). Although it
is not always true, a modulation often involves a non-diatonic motion (within a
voice or across voices), which induces a non-diatonic PCI succession if it occurs
in a small range.

Non-harmonic notes cannot be expressed simply in the sequence of pc inter-
vals without preliminary chord analysis. Nevertheless we can find related PCI
successions by paying attention to the opposite notion of “harmonic notes”. The
condition of a harmonic note in a strict sense is that the note and the other
notes sounding at the same time are contained in a major or minor triad. A
major/minor triad can be expressed with a pair of pc intervals. For example, a
C major chord can appear as (E,G,C) and its permutations in the sequence of
pcs, which is expressed as PCI successions (3,5), (4,3), (5,4), (7,9), (8,7), or (9,8).
Similarly a minor triad is expressed as (3,4), (4,5), (5,3), (7,8), (8,9), or (9,7).
Another class of PCI successions related to harmonic notes is indirect octave,
which is represented as (2, p+1) with z, + 2,41 = 0 mod 12. Many simultane-
ous notes in octaves imply that they are harmonic notes. They are related to the
number of voices or the chord density, which characterise polyphonic textures.

Table 1 summarises the discussed classes of successions of two pc intervals
and their relation to the polyphonic features. The same argument can be applied
to successions of three or more pc intervals. Longer successions provide more in-
formation, but it is harder to obtain statistically meaningful results when dealing
with numerical data. We here concentrate on successions of two pc intervals.

3 Markov Model of PC Intervals

The polyphonic features characterise music styles in terms of their frequencies,
and statistical models can be used to describe their quantitative nature. A sim-
ple statistical model that can describe relations between successions of two data
points in a sequence is the first-order Markov model. The (stationary) Markov
model of pc intervals is described with an initial probability and transition proba-
bilities, which are given by Pit(x) = P(z; = x) and P(z|y) = P(zpns1 = x|z, =
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Fig. 1. Transition probabilities obtained from pieces of Palestrina, Bach, Mozart,
Chopin, and Scriabin (a)—(e). Each black square at the centre of the (z, y)-th cell shows
the transition probability P(y|z) in proportional to the value. For each row in each ta-
ble, the three highest (resp. lowest) values are indicated with blue dashed (resp. red
bold) square frames. The list (f) explains the background patterns and colours of the
cells. The distribution of pc intervals P(z) is also shown above each table.

y). Due to the ergodicity of a Markov model, the initial probability has little
effect for a long sequence, and we here mainly consider the transition probabil-
ities, which have 11 - 10 = 110 independent parameters. The distribution of pc
intervals P(z) = P(xz, = x) can be derived from the transition probabilities by
the equilibrium equation: P(z) = > P(z|y)P(y). The relative frequencies of a
succession (z,y) is described with P(y|z).

Figure 1 illustrates the values of transition probabilities obtained from MIDI
data of pieces by five composers, Palestrina, J. S. Bach, Mozart, Chopin, and
Scriabin, whose works are usually associated with the period of the Renaissance,
the Late Baroque, the Classical, the Early Romantic, and the Late Roman-
tic/Early 20th century. The number of pieces and the data size are shown in
Table 2. The background patterns of the cells indicate the classes of the corre-
sponding PCI successions as summarised in Fig. 1(f). When a succession belongs
to more than one classes, the upper most class in the list is indicated.

We see that some patterns in the transition probabilities accord with the
background patterns of the cells. For example, non-diatonic successions, succes-



Table 2. Results of discriminating pieces by five composers with the Markov model
with the constrained (resp. full) parametrisation. Each value indicates the rate (%) of
pieces recognised as the corresponding composer.

Composer Data size Palestrina Bach Mozart Chopin Scriabin
Palestrina 175 pcs (1.95 MB) 94.9 (99 4) 2.9 (0.6) 7 (0) 6 (0) 0 (0)
Bach 108 pes (0.93 MB) 8 (0) 77.8 (80.6) 13 (13 9) 1. 9 (5.6) 4.6 (0)
Mozart 77 pes (2.40 MB) 2. 6 (1.3) 5.2 (3.9) 7 4 (84.4) 15.6 (10.4) 5.2 (0)
Chopin 90 pes (151 MB) 3.3 (1.1) 10.0 (1.1) 15. (14 1) 44.4 (67.8) 26.7 (15.6)
Scriabin 102 pes (0.79 MB) 9.8 (5.9) 15.7 (6.9) 3.9 (2.0) 14.7 (19.6) 55.9 (65.7)

sions to tritone, and indirect tritones generally have small probabilities. Prob-
ability values corresponding to these PCI successions are generally larger for
composers of later periods, which is a consequence of the time evolution in the
use of dissonances. Similarly, other patterns of transition probabilities can be
associated with the classes discussed in the previous section, and their tenden-
cies for each composer reflect the quantitative nature of the polyphonic features
in different music styles. We omit further details of the analysis for the lack of
space.

4 Constrained Parametrisation and Composer
Discrimination

To quantitatively examine how much the polyphonic features provide informa-
tion to characterise different music styles, we compare results of composer dis-
crimination with the Markov model and a reduced model with constrained pa-
rameters that are related to the classes of PCI successions. In the constrained
model, we introduce five parameters p(non-diatonic), p(indirect-octave), p(tritone),
p(second), and p(triad), which parametrises transition probabilities of class 1, 2,
{3,4}, {5,6}, and {7,8} in Fig. 1(f). The rest probabilities P(z|y) are assumed
to be uniform for each y and determined by the normalisation of probabilities
> . P(z]y) = 1. An algorithm to discriminate composers can be developed from
these models with the maximum likelihood estimation.

Results of composer discrimination are shown in Table 2. To avoid statisti-
cal artefacts by overfitting, the piece-wise leave-one-out method was used. The
composer-wise averaged accuracy was 68.9% (resp. 79.6%), and the mean recip-
rocal rank (MRR), which is the averaged reciprocal rank of the correct composer,
was 1/1.20 (resp. 1/1.11) for the constrained (resp. full) parametrisation. Com-
pared to the reduction of parameters (110 to five), there was a small decrease
of the accuracy for Palestrina and Bach, and a rather large (but not very large)
decrease for the other composers. For Chopin and Scriabin, we see that a large
proportion of misclassified pieces are associated with adjacent composers in the
table for both models.

The rather high accuracies of the full Markov model indicate that the model
parameters well capture characteristics of the composers, and the not-heavy de-



terioration of accuracies with the reduced model indicates that a significant part
of the characteristics is associated with the polyphonic features. The overall ten-
dency that misclassified pieces were more frequently classified to a composer that
is near in the lived period implies that the features capture not only particular
styles of the composers but also a generic style of the composed period to some
extent, which confirms the general intuition about the evolution of music styles.

5 Discussion

It is interesting to apply the present analysis for music style classification prob-
lems. The current state-of-the-art classification algorithms naturally employ many
features related to pitch and rhythm [8-10], and the use of the polyphonic fea-
tures and the pcs intervals would improve the accuracy, computational efficiency,
and generality. It would be possible to construct an effective classification al-
gorithm applicable for general polyphonic MIDI data including performance
recordings, for which information on voice and rhythm cannot be extracted di-
rectly. To our knowledge such an algorithm has not been proposed so far.
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