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ABSTRACT

We discuss automated piano reduction from ensemble scores

based on stochastic models of piano fingering and reduction

process. Music arrangement including piano transcription is

an important compositional technique, automation of which

creates a challenging research field. As a starting point, we

aim at a simple case of piano reduction which is playable

and sounds similar to the original ensemble score. It is pro-

posed to formulate the problem as an optimisation of fidelity

to the original score under constraints on performance diffi-

culty. First a model of piano fingering is presented to quan-

tify performance difficulty. Next we construct a stochastic

model for piano reduction based on the fingering model and

probabilities to describe how notes in ensemble scores are

likely to be edited, from which a piano reduction algorithm

is derived. The models are constructed with merged-output

hidden Markov model, which is a recently proposed model

suited to describe a musical process involving multiple voice

parts. It is confirmed that the constructed algorithm can con-

trol the performance difficulty of output reductions taking into

account the density of notes and chords, the tempo, and the

rhythm of the input ensemble score. The proposed formula-

tion can be applied for more general music arrangement.

1. INTRODUCTION

Piano transcription from ensemble scores in various instru-
mentations including orchestral, chamber, and choral scores
has traditionally been an important compositional technique,
which is also widely used in the field of popular music. The
purposes include extending the repertoire of piano perfor-
mance, appreciation and diffusion of original pieces, using
piano in place of orchestra accompaniment or other ensemble
accompaniment, and exercise for composition and analysis.
Automation of piano transcription (and music arrangement in
general) should have wide applications and thus become an
important musical technology. It is also interesting in the as-
pect of music research as an empirical test of analyses and
models to understand the process of composition, arrange-
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ment, and performance. Provided recent developments in in-
formation processing and computational power, it is now at-
tractive to study these problems.

There are various possible piano transcriptions even for one
ensemble score, reflecting musicality and techniques of the
arranger and the intended performance difficulty. Since it is
difficult to automate transcriptions with high musicality from
the outset, we discuss in the following transcriptions that are
as faithful to the original score as possible and playable at
the same time. This sort of transcriptions, usually called pi-
ano reductions, are often seen in music practice, and their
automation is important for direct applications as well as a
basis for more advanced techniques of music arrangement.

Automation of piano reduction from ensemble pieces has
been discussed in Refs. [1, 2] (see also Ref. [3] for a related
work). In these studies, simple constraints such as the max-
imal number of simultaneous notes and the maximal interval
played with one hand are used as conditions for playable re-
ductions, and the necessity to control performance difficulty
depending on players’ skill is emphasised in Ref. [1]. While
these simple constraints are effective for passages with a rela-
tively slow tempo, which these studies take as examples, it is
often necessary to change the playability condition according
to tempos etc., and more detailed discussions are necessary.
In addition, when much editing of notes is necessary, a com-
plex problem of competing rules has to be solved.

To tackle these problems comprehensively, we formulate
the problem of piano reduction as an optimisation problem
of fidelity to the original ensemble score under constraints
on performance difficulty (Sec. 2). Concretely, we first pro-
pose a method to quantitatively describe performance dif-
ficulty based on a stochastic model of piano fingering [4]
(Sec. 3). We then develop a method of piano reduction based
on a stochastic model which binds the fingering model and
probabilities to describe how notes in ensemble scores are
likely to be edited (Sec. 4). A method for guitar transcrip-
tion based on a similar principle was recently proposed [5],
and we extend the model for transcription so that more gen-
eral transcriptions such as omission of chords in the original
scores can be included. The fingering model and the model
for piano reduction constructed in this study are based on
merged-output hidden Markov model (HMM) [6], which de-
scribes a musical process involving multiple voice parts, and
it is reviewed in Sec. 3. Finally, results and evaluation of the
piano reduction algorithm are given in Sec. 5.
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2. FORMULATION OF AUTOMATIC PIANO
REDUCTION WITH PROBABILITY

There are various sorts of piano transcriptions from ensem-
ble scores in music practice. Whereas there are transcrip-
tions with high technicality and musicality such as the exam-
ples by Liszt [7], there are also transcriptions that are mostly
faithful to original scores, which are seen in piano transcrip-
tions of orchestral accompaniments (e.g., compare the over-
ture in Ref. [8] and the corresponding piece in Ref. [7]). The
most faithful transcription would be obtained by putting all
the notes in an ensemble score into a piano score. However
the result is often too difficult to play, and editings such as
deleting less important notes are in order. The aim of this
study is automatic production of piano transcription that is as
faithful to the original score as possible and playable at the
same time, which we call plain reduction 1 .

In general, a score with less performance difficulty is ob-
tained by deleting notes or changing the registers of notes,
etc., but then the fidelity of the score to the original score
decreases. Thus the problem of plain reduction can be re-
stated as a problem of retaining as much fidelity to the orig-
inal score as possible with the performance difficulty kept in
a certain range. If we can quantitatively define performance
difficulty and fidelity to the original score, we can formulate
the problem as optimising the fidelity under constraints on the
performance difficulty.

There are several aspects of performance difficulty such as
the frequency of performance errors made in sight-reading or
after sufficient practices, and the required time to master a
piece [9, 10]. Relevant factors include not only the difficulty
of making movements to play notes but also the way of repre-
senting the score. For simplicity, we mainly consider the dif-
ficulty of performance movements, particularly the difficulty
of piano fingering, which is presumably the most relevant fac-
tor. The treatment of other factors is left for future research.
The problem of finding the optimal fingering has been stud-
ied using the fingering cost, which is related to the difficulty
of fingering [11, 12]. However, the principle to determine the
fingering cost has not been established. Alternatively, we pay
attention to the naturalness of fingering in a statistical sense,
which can be defined from fingering data. A stochastic model
of piano fingering can be used to determine the most natural
fingering and quantify the difficulty of fingering in terms of
statistical naturalness. Details will be explained in Sec. 3.

On the other hand, it is also difficult to set up a general def-
inition of fidelity of a reduced score to the original score. In
general, it is related to symbolic elements in the score as
well as realised acoustics 2 . For definiteness, we here fo-
cus on symbolic elements in scores including pitch and note
value and consider their concordance as a factor of the fi-
delity. As explained in Sec. 4, musicians commonly delete

1 This is similar to what is conventionally called “piano reduction.” We
use the term plain reduction to avoid confusion by different conventions and
stress that the idea is not restricted to piano transcription.

2 For example, a chord in an orchestral score is often written as a tremolo
in its piano transcription, the purpose being to compensate for the decaying
sound of piano rather than to have a faithful symbolic representation of score.

notes or transpose them in octaves in piano reductions. Score
reduction can be regarded as a process of editing notes with
these operations, and a less amount of editing operations gen-
erally means more fidelity to the original score. To find an
optimal plain reduction, it is necessary to compare multiple
possibilities and this can be done with the introduction of an
editing cost, which quantitatively describes what sort of edit-
ing operations are more allowable. The editing cost can be set
up by an arranger, or it can be determined with editing prob-
abilities obtained from some data of reductions. The latter
way of using probability is advantageous to connect the edit-
ing cost with the performance difficult, which we consider in
this study.

With the quantification of performance difficulty and fidelity
to the original score, a method of automatic plain piano re-
duction can be constructed based the above principle. As ex-
plained in detail in Sec. 4, we can build a stochastic model for
piano reduction by binding the model of piano fingering and
editing probabilities, and a piano reduction algorithm can be
derived from the model.

3. PIANO FINGERING MODEL AND
PERFORMANCE DIFFICULTY

Recently a quantitative measure of performance difficulty de-
rived from a stochastic model of piano fingering was pro-
posed [4]. For the purpose of using the model and the mea-
sure in Sec. 4, we review the main results in this section. For
details, we refer the readers to Ref. [4].

3.1 Piano fingering model based on HMM

Let us begin with a fingering model for one hand. A passage
is represented as a sequence of pitches p

1:N

= (p
n

)N
n=1

(N
is the number of notes). A fingering assigned to the score is
represented as a sequence of finger numbers f

1:N

= (f
n

)N
n=1

(1 = thumb, 2 = the index finger, · · · , 5 = the little finger),
each f

n

being assigned to note p

n

3 . A stochastic model of
piano fingering describes the naturalness of a fingering f

1:N

to a passage p

1:N

in terms of probability P (f
1:N

|p
1:N

).
An explicit model for one hand based on HMM was pro-

posed in Ref. [13]. In the model, we consider two probabil-
ities. One is the probability that a finger would be used af-
ter another finger P (f

n

|f
n�1

), which we call transition prob-
ability. The other is the probability that a pitch would re-
sult from succeeding two used fingers P (p

n

|p
n�1

, f

n�1

, f

n

),
which we call output probability. With these probabilities, the
probability of notes and fingerings is given as

P (p
1:N

, f

1:N

) =
NY

n=1

P (p
n

|p
n�1

, f

n�1

, f

n

)P (f
n

|f
n�1

),

(1)

where initial probabilities are written as P (f
1

|f
0

) ⌘ P (f
1

)
and P (p

1

|p
0

, f

0

, f

1

) ⌘ P (p
1

|f
1

). The conditional probabil-
ity P (f

1:N

|p
1:N

) is also given by the model accordingly.
3 We here implicitly assume that each note is played with only one finger.

An exception is finger substitution, which we do not consider in this study.
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Figure 1. Representation of position on the piano keyboard with a two-
dimensional lattice.

Values of the transition and output probabilities can be de-
termined from fingering data. Because there are a great num-
ber of parameters of output probabilities and it is difficult to
fully determine their values from data of practical size, we put
reasonable assumptions and constraints to reduce the number
of parameters. First it is assumed that the probability depends
on pitches only through their geometrical positions on the
keyboard which is represented as a two-dimensional lattice
(Fig. 1). We also assume the translational symmetry in the
x-direction, the time inversion symmetry, and reflection sym-
metry between hands. Then the output probability has a form
P (p0|p, f, f 0) = F (`

x

(p0)� `

x

(p), `
y

(p0)� `

y

(p); f, f 0) and
satisfies certain conditions, where (`

x

(p), `
y

(p)) is the coor-
dinate on the keyboard. The above model can be extended
to including chords, by converting a polyphonic passage to
a monophonic passage by virtually arpeggiating the chords
[12, 14]. Here, notes in a chord are ordered from low pitch to
high pitch.

3.2 Merged-output HMM and fingering model for both
hands

Whereas the left and right hand parts are usually indicated
with different staffs in a piano score, the separation between
hand parts is not given in reducing ensemble scores. We thus
need a piano fingering model for both hands.

A hand part (left or right) associated to a note p

n

is indi-
cated with an additional variable ⌘

n

= L,R, and a finger-
ing for both hands can be represented as (⌘

n

, f

n

)N
n=1

. One
could consider an HMM with a latent variable (⌘

n

, f

n

), but
such a model cannot effectively describe the fingering pro-
cess, which has the structure of stronger dependence among
notes in each hand and weaker dependence across hands.

Recently a model, called merged-output HMM, is proposed
that is suited for describing such a process with multiple voice
parts [6]. The basic idea is to construct a model for both hands
by starting with two parallel HMMs, called part HMMs, each
corresponding to the HMM of each hand, and then merging
the outputs of the part HMMs. The state space of the merged-
output HMM is given as a triplet k = (⌘, f

L

, f

R

) of the hand-
part indication ⌘ = L,R and the finger numbers for both
hands. With the transition and output probabilities of the part
HMMs a

L,R

ff

0 = P

L,R

(f 0|f) and b

L,R

ff

0 (`) = F

L,R

(`; f, f 0)

(` = (`
x

, `

y

)), the transition and output probabilities of the
merged-output HMM are given as

a

kk

0 =

(
↵

L

a

L

fLf

0
L
�

fRf

0
R
, ⌘

0 = L;

↵

R

a

R

fRf

0
R
�

fLf

0
L
, ⌘

0 = R,

(2)

b

kk

0(`) =

(
b

L

fLf

0
L
(`), ⌘

0 = L;

b

R

fRf

0
R
(`), ⌘

0 = R,

(3)

where � denotes Kronecker’s delta. Here ↵

L

⇠ ↵

R

⇠ 1/2
represents the probability of choosing which of the hands to
play the note. Although certain interaction factors between
hands can be introduced [6], we confine ourselves to the case
of no interactions in this paper for simplicity. By estimating
the most probable sequence k̂

1:N

, both the optimal configu-
ration of hands ⌘̂

1:N

, which yields hand-part separation, and
the optimal fingering (⌘̂, f̂

⌘̂

)
1:N

are obtained. For details, see
Refs. [4, 6].

3.3 Quantitative measure of performance difficulty

A quantitative measure of performance difficulty based on the
statistical naturalness of the fingerings can be obtained with
the above model. It is given as the time rate of the probabilis-
tic cost:

D(t) = � lnP (p(t),f(t))/�t (4)

where p(t) denotes the sequence of notes in the time range
[t � �t/2, t + �t/2], f(t) is the corresponding fingering,
and �t is a width of the time range to define the time rate,
which can take values from a few 10 milli seconds to 10
seconds. It is possible to calculate D(t) for a score with-
out indicated fingerings by replacing f(t) with the estimated
fingerings f̂(t) with the fingering model. The difficulty for
each hand D

L,R

(t) can also be defined similarly. Note that
features such as playing speed, pitch entropy, hand displace-
ment rate, hand stretch, fingering complexity, and polyphony
rate, which are discussed in previous studies [10], are incor-
porated, although implicitly, in the measure.

Fig. 2 shows some examples of D
L,R

(t) calculated for sev-
eral piano pieces. Here and in the following, we set �t to 1
sec. Although it is not easy to evaluate the quantity in a strict
way, the results seem reasonable and reflect generic intuition
of difficulty. Invention No. 1 by Bach, which can be played
by beginners, yields D

L,R

that are less than about 10, the
example of Beethoven’s sonata which requires middle-level
technicality has D

L,R

around 20 to 30, and Chopin’s Fantasie
Impromptu which involves fast passages and difficult finger-
ings has D

L,R

up to about 40. It is also worthy of noting
that relatively difficult passages such as the fast chromatique
passage of the right hand in the introduction of Beethoven’s
sonata and ornaments in the right hand of the slow part of the
Fantasie Impromptu are also captured in terms of D

R

.
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(a) Difficulty for right hand DR

(b) Difficulty for left hand DL

Figure 2. Examples of DR and DL. The red (resp. green, blue) line is for
Bach’s two-voice invention No. 1, (resp. introduction and exposition parts
of the first movement of Beethoven’s eighth piano sonata, Chopin’s Fantasie
Impromptu).

4. MODEL AND ALGORITHM FOR PLAIN PIANO
REDUCTION

4.1 Editing operations and probabilities in piano
reduction

As explained in Sec. 2, the fidelity of a reduction to the orig-
inal score can be defined as an amount of editing operations
applied to the notes. The choice of used operations is influ-
enced by music style, structure, melodic and harmonic ele-
ments of a piece, and it also reflects the personality of ar-
rangers. Possibility of editing notes is not unique in most
situations, and the process of editing a note can be described
in terms of probability, which we call editing probability. The
fidelity to the original score can then be defined as the accu-
mulation of editing probabilities. Table 1 shows the frequen-
cies of some editing operations of notes in the seventh piece
of Tchaikovsky’s Nutcracker Suite for the composer’s piano
reduction [15]. Together with the fact that only 1.7% of notes
in the reduction have no corresponding notes with the same
pitch or notes transposed in octaves in the original orchestral
score, we see that deletion of notes and transposition in oc-
taves are the main operations of editing, and there are a few

Table 1. Frequencies of editing operations applied to the notes in
Tchaikovsky’s orchestral piece for the composer’s piano reduction.

# Notes
Not

edited
Transposed
in octave

Deleted
and others

3705 47.4% 1.6% 51.0%

newly added notes in the piano reduction. According to this
result, we consider deletion of notes and octave transpositions
as possible operations in the following.

4.2 Model for plain piano reduction

In the probabilistic formulation, the problem of plain reduc-
tion can be defined as the problem of finding the optimal re-
duction r̂ given an ensemble score o that maximises P (r|o)
among a set R of possible reductions r’s. The set R is re-
stricted by the constraints on the performance difficulty. The
probability P (r|o) should reflect the measure of fidelity in
terms of the editing probabilities and how r is a good or nat-
ural piano score. This can be clarified by rewriting the prob-
ability with the Bayes’ formula as P (r|o) / P (o|r)P (r),
where we suppressed a factor P (o) which is irrelevant for the
maximisation of the probability. If we take r as the variables
(including the outputs) of the fingering model in Sec. 3.2,
P (r) can be given with the model. P (o|r) can be defined
with the editing probabilities. The formulation is akin to sta-
tistical machine translation (e.g. [16]), and a similar formula-
tion for guitar arrangement is proposed in Ref. [5].

While a chord (or a set of simultaneous notes) is taken as a
unit of state transition in Ref. [5], deletions of chords often
appear in actual reductions. Such a deletion of a chord can
be described by introducing an additional process of select-
ing whether a note in the ensemble score is played or not in
advance to the process of the fingering model. This can be de-
scribed by extending the variable ⌘ = L,R to ⇠ = NP,L,R

(NP signifies “not played”), and if ⇠ = NP a note is not
played and both left and right fingers stay at the previous po-
sitions. The corresponding note o in the ensemble score is
then supposed to be generated from a uniform distribution
b

uniform

(o).
To construct a computationally tractable model, we need to

simplify P (o|r). For this, we assume that the editing prob-
ability is independent for each note in the ensemble score.
Then, if a note o in the ensemble score is represented as a
pitch p in the reduction, the editing probability is given as
P (o|p), which is denoted by b

p

(o). P (o|r) is given as the
product of such editing probabilities for all notes.

In summary, the probability P (o|r)P (r) can be computed
with a model with states represented by a set of stochastic
variables r = (⇠, f

L

, p

L

, f

R

, p

R

) consisting of the state of the
fingering model (f

L

, p

L

, f

R

, p

R

) and an additional variable
⇠ = NP,L,R that determines wether a note in the ensemble
score is played or not , and if played, by left or right hand.
The probability P (r) and P (o|r) are given as products of
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transition probability P (r0|r) = a

rr

0 and output probability
P (o|r, r0) = b

rr

0(o), which are given as

a

rr

0 =

8
><
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�

NP

�
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0
L
�

fRf

0
R
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pLp

0
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0
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0 = NP ;

�

L

a

L

fLf

0
L
b

L

fLf

0
L
(`(p0

L

)� `(p
L

)), ⇠

0 = L;

�

R

a

R

fRf

0
R
b

R

fRf

0
R
(`(p0

R

)� `(p
R

)), ⇠

0 = R;

(5)

b

rr

0(o) =

8
><

>:

b

uniform

(o), ⇠

0 = NP ;

b

p

0
L
(o), ⇠

0 = L;

b

p

0
R
(o), ⇠

0 = R;

(6)

Here �

NP

is the probability that a note in the ensemble score
is not played, and �

L,R

is the probability that it is played by
left/right hand (�

NP

+ �

L

+ �

R

= 1). We see that the model
is a merged-output HMM.

Although being implicit in the above equations, the values
of the probabilities �

NP

and b

p

(o) can vary according to the
corresponding note in the ensemble score to describe tenden-
cies such as a note in a passage in the ensemble score which is
difficult to play directly has a high probability to be deleted,
and notes in the melodic line and the bass line are less likely
to be deleted. In principle, b

p

(o) can also describe what kind
of editing operation is likely to be applied to a particular note.

4.3 Algorithm for plain piano reduction

Let us explain details of our algorithm for piano reduction
based on the above model. We first make a condensed score
by collecting all notes in a given ensemble score and putting
voice parts with an identical pitch and note value into one
voice part. The reduction result is obtained by calculating the
most probable state sequence of the model in Sec. 4.2, tak-
ing the condense score as the output sequence of the model,
which can be done with the Viterbi algorithm.

Control of performance difficulty and options such as retain-
ing particular notes in the reduction can be obtained by tun-
ing the probability values for �

NP

and b

p

(o). We can use the
measure presented in Sec. 3.3 for the control of performance
difficulty. Since it is not possible to directly control the diffi-
culty of the reduction result, a sub-optimisation method such
as iterative optimisation is necessary in general. For the latter
options of tuning the parameters, we can apply the methods
to extract melody and bass parts given in Refs. [2, 1] and es-
timate the parameters from score elements, or we can reflect
the arranger’s preferences by manually tuning the parameters.

5. RESULTS AND EVALUATION

The present algorithm of piano reduction is evaluated with a
passage (the last 16 bars) in the seventh movement “Danse
des Mirlitons” in Tchaikovsky’s The Nutcracker Suite. Be-
cause an iterative optimisation required too much computa-
tion time, the difficulty of the reduced result was controlled
by setting the probability �

NP

for each note so that a pre-
determined value of the difficulty D̄

L,R

is achieved on aver-
age. When the difficulty of the condensed score in the neigh-
bourhood of a note is Dcondense

L,R

(t), the probability is set as

Figure 3. Condensed score of the orchestral piece used for the evaluation
(see text).

�

NP

= D̄
L,R

/Dcondense

L,R

(t). Here the time interval to com-
pute D(t) was taken as �t = 1 sec, and the condensed score
is preliminary separated into the left and right hand parts
(with the fingering model in Sec. 3), and the corresponding
difficulty is used. In this study, a melody part (the first flute)
and a bass part (contrabass) were determined by extracting
the skyline and bassline, and we set �

NP

= 0.0001 for notes
in these voice parts. The editing probability b

p

(o) was set
as 0.8 for an unchanged pitch, 0.1 for an octave shift, and 0
otherwise. For the parameter of fingering model, we used the
values in Ref. [4].

The reduction results are presented in Figs. 4(a) to 4(c),
where cases with (D̄

L

, D̄
R

) = (5, 10), (20, 30), and (30, 40)
are shown. In the figures, a chord including an interval larger
than or equal to tenth in one hand is indicated with an arpeg-
gio. As a reference, the condensed score (Fig. 3) and a reduc-
tion by the composer (Fig. 4(d)) are also shown [15]. Overall,
the difficulty of the reductions varies according the the preset
values D̄

L,R

. It is confirmed that the difficulty is also con-
trolled locally: E.g., chords with rapid rhythms have fewer
notes in the reductions. There is a tendency that the fidelity
to the original score increases as the difficulty increases, but
there were cases that some unmusical notes including unre-
solved discordant notes and ornaments were introduced addi-
tionally. The reductions were playable by a good pianist in
most parts, but there were also notes that are difficult to per-
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Table 2. Evaluation results of the reductions by the present algorithm. See
text for the explanation of evaluation measures.

Fig. (D̄
L

, D̄
R

) Difficulty Fidelity
4(a) (5, 10) 8 4
4(b) (20, 30) 8 4
4(c) (30, 40) 10 8
4(d) (Composer’s reduction) 6 8

form (e.g. the downward-moving chords in the right hand in
the 8th bar). There were a few cases of unnatural hand sep-
arations (e.g. F#3 in the right hand part in the 14th bar in
Fig. 4(a)).

We asked a pianist to evaluate the reductions by the present
algorithm in terms of performance difficulty (0: very easy to
10: very difficult) and fidelity to the original score (0: very
different to 10: very faithful). Dynamics and articulations
were not used for the evaluation. The scores are listed in Ta-
ble 2, and it was pointed out that there are some notes that
are difficult or impossible to perform in all reductions by the
algorithm. The cause of the highest difficulty for the result in
Fig. 4(a) is the downward-moving chords in the right hand in
the 8th bar. Repetitions of chords in 32nd notes were gener-
ically judged as unplayable, but it was suggested that delet-
ing one note would make the passage playable in some cases.
The evaluation scores for the composer’s reduction are also
shown in the Table. It has no unplayable notes and is gener-
ally musically satisfactory. At the same time, however, there
were suggestions for improvement such as adding B4 on the
second beat of the fifth bar in the right hand would be more
appropriate and the melody on the second beat of the eighth
bar would better be in the original register.

Let us discuss the results. The results indicate that auto-
matic piano reduction that can control the performance diffi-
culty and the fidelity to the original score simultaneously is
realised by the present algorithm. (Almost) unplayable notes
in the reductions can also be recognised with the proposed
measure of difficulty. For example, D

R

(t) exceeds 50 around
the 32nd notes in the eighth and tenth bars in Fig. 4(b), and it
exceeds 80 in the 15th bar in the same reduction. Therefore,
better reductions with less unplayed notes are expected to be
obtained by iterative optimisation etc. Development of an al-
gorithm and necessary reduction of computational cost are re-
maining issues. Another important issue is the incorporation
of musical constraints such as appropriate voice leading into
the model, which is possible in principle but raises a problem
of large computational cost.

6. CONCLUSION

We discussed the problem of plain piano reduction from en-
semble scores. Based on the proposed formulation of the
problem as an optimisation problem of the fidelity to the orig-

inal ensemble score under constraints on performance dif-
ficulty, a piano reduction algorithm was developed with a
stochastic model. A quantitative measure of performance dif-
ficulty was defined in terms of statistical naturalness based on
a piano fingering model, and the fidelity to the original score
was incorporated into a model for piano reduction with edit-
ing probabilities. It is confirmed that the constructed algo-
rithm can control the performance difficulty of the output re-
ductions taking into account the density of notes and chords,
tempo, and rhythm, which would be difficulty to achieve with
a set of simple constraints as in Refs. [1, 2]. At the same time,
the reductions contained some unplayable notes and musi-
cally unsatisfactory voice leadings, which necessitates further
refinements. We also confirmed that these problems could be
improved with refinements on the optimisation algorithm and
the model. In order to achieve more human-like reductions,
further musical knowledge on harmony and musical forms
should be incorporated in the model.

The present formulation of automatic music arrangement
can in principle be applied for other forms of arrangement if
we replace the piano fingering model with an appropriate per-
formance/score model of the target instrumentation/style, and
adapt the editing probabilities for relevant editing operations.
It would also be interesting to extend the present method for
a system to produce music arrangement with interactions be-
tween human and computer. As mentioned in Sec. 5, the
reductions made with the algorithm can be much improved
with a small amount of editing by human. It would also be
effective that a user specifies his/her preference on the rela-
tive importance of notes and melodic segments and a partic-
ular way of editing notes by tuning the editing probabilities,
which would be difficult to achieve in complete automation.
Such a human-computer interaction would be an interesting
intersection of computer technology and music.
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Figure 4. Reductions made by the present algorithm (a)–(c) with composer’s reduction (d). The condensed score of the original piece is in Fig. 3.
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